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Abstract— Autonomous vehicles promise safer roads, energy
savings, and more efficient use of existing infrastructure, among
many other benefits. Although the effect of autonomous vehicles
has been studied in the limits (near-zero or full penetration),
the transition range requires new formulations, mathematical
modeling, and control analysis. In this article, we study the
ability of small numbers of autonomous vehicles to stabilize a
single-lane system of human-driven vehicles. We formalize the
problem in terms of linear string stability, derive optimality con-
ditions from frequency-domain analysis, and pose the resulting
nonlinear optimization problem. In particular, we introduce
two conditions which simultaneously stabilize traffic while
imposing a safety constraint on the autonomous vehicle and
limiting degradation of performance. With this optimal linear
controller in a system with typical human driver behavior, we
can numerically determine that only a 6% uniform penetration
of autonomously controlled vehicles (i.e. one per string of up
to 16 human-driven vehicles) is necessary to stabilize traffic
across all traffic conditions.

I. INTRODUCTION

Transportation accounts for 28% of energy consumption

in the US. 75% of that occurs on highways—more if we

include major arterials. Workers spent on aggregate over

three million driver-years commuting to their jobs [1], with

significant impact on nation-wide congestion. Based on 2012

estimates, U.S. commuters experienced an average of 52

hours of delay per year, causing $121 billion of delay and

fuel costs annually [2], and estimates project that 4.2% of

fuel will be wasted in congestion in 2050 (up from 1.8% in

1998) with the adoption of autonomous vehicles [3].
Traffic jams are undesirable—for vehicular throughput,

driver safety, energy consumption, etc.—and this article

investigates the potential for using autonomous vehicles to

mitigate these jams. Human drivers can sometimes spon-

taneously cause stop-and-go traffic conditions—remarkably,

even without provocation [4]. This comes from a property

known as string instability, where some perturbations get

amplified as they pass down a singly connected chain of

(plant stable) vehicles [5]. This causes uniform flow to be

an unstable equilbrium, with natural disturbances quickly

amplifying into high amplitude stop-and-go shock waves [6].
In this article, we use autonomous vehicles to induce

string stability in a system of (human-driven) vehicles that

is otherwise string unstable, attenuating perturbations and

thereby preventing the formation of traffic jams. Our problem

setting and motivation is depicted in Figure 1.
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Fig. 1. In freeway traffic, human drivers respond to their preceding
vehicles; human reaction times along with environmental influences can
cause a backwards propagating shockwave of slower vehicles (traffic jams
indicated by the red). An autonomous vehicle can issue precise control by
considering the overall traffic conditions and models of the human drivers,
thereby dampening the shockwave. Vehicles following the autonomous
vehicle then experience an attenuated perturbation. (Image courtesy Florian
Brown-Altvater)

In addition to considering (asymptotic) stability, we must

additionally maintain a safety condition, ensuring that the

autonomous vehicles never get too close to their preceding

vehicle. We may also like to define an efficiency criterion,

where the autonomous vehicles also do not lag too far behind

their preceding vehicles. Together, these conditions form an

optimization problem; its solution gives a linear controller

corresponding to the optimal autonomous vehicle which

permits a safe and performant stabilization of uniform traffic

flow at the lowest penetration rate of autonomous vehicles.

Through numerical analysis, we can determine this optimal

autonomous controller given a specific human car following

model.

In particular, the contributions of this paper include:

• A microscale (vehicle-level) transfer function formula-

tion of traffic jam formation in single-lane traffic,

• Analytic conditions on this formulation characterizing

(string) stability, safety, and relative performance of

autonomous vehicle controllers in a string of human

drivers,

• An optimization problem defined by those conditions to

minimize the necessary penetration rate of autonomous

vehicles, and

• Numerical analysis of the optimization problem and its

resulting linear controller on standard traffic models.

We find that with representative human driver behavior, a

single vehicle using our autonomous controller can stabilize

a string of up to 16 human driven cars across all traffic con-

ditions (i.e. at a uniform 6% penetration). With even fewer

autonomous vehicles, we can still improve overall driving

conditions, stabilizing uniform flow at a subset of previously
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unstable traffic conditions. This autonomous controller is

robust to small variations in human driver model parameters.

The necessary stabilizing penetration rate is sensitive to one

of the autonomous controller parameters, but robust to small

changes in the others.

II. RELATED WORK

A. Dynamics of road traffic

Numerous car following models (CFMs) have been de-

veloped to simulate longitudinal road traffic, specifying the

dynamic trajectory of a vehicle in relation to the vehicle

preceding it [7]. The Intelligent Driver Model (IDM) [8] is a

widely used nonlinear model for evaluating human behavior

as well as for implementing adaptive cruise control (ACC)

[9]. Other models are also in use, guaranteeing collision-free

dynamics [10] or providing analytically tractable equations

[6]. The concept of string stability has been introduced to

model and analyze the naturally occurring stop-and-go waves

in traffic for CFMs [11]. In this article, we focus on a single-

lane highway setting, using IDM in our work to represent

longitudinal traffic dynamics. Additionally, we extend the

string stability analysis to heterogeneous models and apply

the concept to traffic control.

B. Vehicle control

In response to traffic patterns (in particular anticipative

traffic), several controllers have been proposed to opti-

mize driving ease, comfort, and efficiency for the indi-

vidual controlled vehicles [12]. Examples include adaptive

cruise control (ACC) and more recently, cooperative adaptive

cruise control (CACC). ACC automatically adapts the cruise-

control velocity of a vehicle if there is preceding traffic to a

safe following distance [13]–[15]. CACC extends ACC with

a wireless intervehicle communication link, which permits

the use of more observations (from other vehicles) for more

precise control [16]–[19].

C. System-level impacts of autonomy

It has been demonstrated that human drivers [4] and

imperfect autonomous controllers [20] may cause upstream

shockwaves of heavy braking in a string of vehicles, forming

traffic jams throughout the system despite the absense of

accidents or bottlenecks. This string-instability can also be

observed in consecutive vehicles using ACC, which amplify

the speed variations of preceding vehicles [9]. On the other

hand, consecutive vehicles using CACC have been shown to

prevent the local formation such shockwaves in those vehi-

cles in single-lane experiments [9], [21]. In this article, we

are concerned with autonomous controller design which opti-

mizes global system-wide metrics without requiring vehicle-

to-vehicle (V2V) connectivity.

A related study characterizes a variety of systems across

autonomy type, control parameters, and penetration rates

within the framework of string stability [22], while our work

poses an explicit optimization problem to identify control

parameters to realize the best achievable penetration rate.

D. Autonomous fleets

The vast majority of work on system-level effects—e.g.

energy consumption, total travel time, and string stability—of

autonomous vehicles consider either close to full penetration

as to attain full control [3], [23]–[25], or small enough of a

penetration as to not affect traffic dynamics [26], [27].

In this work we bridge the gap between minimal and full

penetration of autonomous vehicles by studying a mixed au-

tonomy setting, a setting that is projected to be reality for at

least the next 35 years [3]. A few studies have begun consid-

ering the mixed setting, modeling and simulating a mixture

of ACC and manual vehicles [28], [29]. Our work is most

closely related [30], [31] which demonstrates autonomous

controllers that eliminate traffic jams at low penetration rates

from specific unstable ring road configurations.

In contrast to these, our paper provides general anal-

ysis, derivation of optimality conditions, and an explicit

optimization problem on system-wide string stability while

maintaining vehicle-level considerations including safety and

efficiency.

III. PRELIMINARIES

A. Microsimulation modeling

Standard car following models (CFMs) are of the form:

ai = v̇i = f(hi, ḣi, vi), (1)

where the acceleration ai of car i is some typically nonlin-

ear function of hi, ḣi, vi, which are the headway, relative

velocity, and velocity for vehicle i, respectively. Though

a general model may include time delays from the input

signals hi, ḣi, vi to the resulting ouput acceleration ai, we

will consider a non-delayed system, where all signals are

measured at the same time instant t. Example CFMs include

the Intelligent Driver Model (IDM) [8] and the Optimal

Velocity Model (OVM) [32], [33].

In a uniform flow equilibrium, each car moves at a

constant velocity v∗ with constant headway h∗. We use the

term traffic condition to refer to this equilibrium velocity v∗.
It is intuitive to consider the equilibrium velocity relative to

a target velocity v0 (free flow speed), comparable to a speed

limit for highway traffic [8]. In practice, the equilibrium can

be determined or estimated by the local traffic density. In

settings with heterogeneous vehicle types, the equilibrium

can be numerically solved by constraining the total headways

to be the total road length and the velocities to be uniform.

At this uniform flow equilibrium, we have

ai = 0 = f(h∗, 0, v∗), (2)

defining the relationship between the two equilibrium quan-

tities h∗, v∗. To characterize this system, we consider the

linearization of the dynamics about the equilibrium,

ai ≈ ∂hf |eq · (hi−h∗)+∂ḣf |eq · ḣi+∂vf |eq · (vi−v∗) (3)

with coefficients kp = ∂hf |eq , kd = ∂ḣf |eq , kv = −∂vf |eq.
Let xi(t) be the absolute position of vehicle i at time t, and

let x̃i(t) be the position of vehicle i relative to its equilibrium
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position at time t. The resulting linear dynamical system can

be re-written as

¨̃xi = kp(x̃i−1 − x̃i) + kd( ˙̃xi−1 − ˙̃xi)− kv( ˙̃xi) (4)

using suitable transformations and initial conditions:

xi(0) := −ih∗ ∀i (5)

hi(t) := xi−1(t)− xi(t) ∀i ∈ {1, . . .} (6)

x̃i(t) := xi(t)− xi(0)− tv∗ ∀i. (7)

For convenience of notation, we have not explicitly included

the length of the vehicles Lveh in these equations, but

it should be straightforward to see how this definition of

headway maps to the bumper-to-bumper headway.

We now denote T (s) the transfer function for the linear

dynamics of Equation (4), with X̃(s) the laplace transform

of x̃(t). For vehicle i:

Ti(s) :=
X̃i(s)

X̃i−1(s)
=

kdis+ kpi
s2 + (kdi + kvi)s+ kpi

. (8)

For the remainder of this article, we use subscript H (re-

spectively R) for the index i to differentiate between the

linearized dynamics of a nonlinear human car following

model (respectively autonomous vehicle controller).

B. System characteristics

We study the linear stability of the uniform flow [6] (also

called string stability or platoon stability [34]). It should be

noted that car-following dynamics cannot be fully captured

through linearization and non-linear stability analysis should

be performed, especially when not close to the system

equilibria. Unfortunately, except for limited models, non-

linear stability analysis is not analytically tractable. However,

recent work has demonstrated the existence of vehicle con-

trollers which can bring the overall mixed-autonomy traffic

system system close to uniform flow equilibria, the regime

where the following analysis and optimization is valid [31].

Although there is ambiguity present in the literature,

the principle behind string stability is that an oscillation

experienced by a vehicle (e.g. at i = 0) should be attenuated

upstream a string of vehicles (e.g. i > 0) [21].

Definition 1 (Vehicular string stability [21], [35]): A ve-

hicle with transfer function T (·) is string stable if and only

if |T (jω)| ≤ 1, ∀ω. Equivalently, ‖T (jω)‖∞ ≤ 1.

From [6], [34], we have another condition for string

stability for the linearized dynamics of the non-delayed

system under oscillatory perturbations at frequency ω.

kp ≤ 1

2
ω2 + kdkv +

1

2
k2v, ∀ω ∈ R

+. (9)

Definition 2 (System-level string stability): Let (Ti)i∈[N ]

denote the transfer functions of the N vehicles in a single

lane traffic system. This system is string stable if and only

if ∥∥∥∥∥
∏
i

Ti(·)
∥∥∥∥∥
∞
≤ 1. (10)

The main restriction from the definition of [36] is that the

length of the string is given.

Note that the stability of a system as defined does not

prohibit collisions between vehicles or inefficient driving

behavior. This motivates additional metrics on vehicles in

the traffic system.

Definition 3 (Headway bounds): We define the safety
bound Δ− > 0 as the minimum headway that a vehicle

is allowed to experience. That is, regardless of any given

external disturbance, we require the headway to maintain

h(t) > Δ− ∀t > 0 (11)

Similarly we specify the performance bound as the maxi-

mum allowable headway Δ+ > 0 that a vehicle can permit:

h(t) < Δ+ ∀t > 0. (12)

By bounding the headway below, we ensure safety by

maintaining separation between vehicles. By bounding its

maximum value, we ensure that the vehicle does not lag too

far behind the rest of the traffic. Together, these relations

impose an allowable region for a vehicle’s headway relative

to its equilibrium, which we can collect into a single headway
bound Δ > 0:

Δ− = h∗ −Δ < h(t) < h∗ +Δ = Δ+ ∀t > 0. (13)

IV. OPTIMIZATION PROBLEM FORMULATION

A. Overview

With these definitions in place, we can now find and

characterize an autonomous vehicle controller to stabilize a

homogenous system of human vehicle models, without de-

grading performance or violating safety. In particular, given

an otherwise string unstable human traffic system, we aim

to minimize the density of autonomous vehicles necessary

to render that system string stable. Equivalently, for a single
autonomous vehicle, we aim to find and characterize the

maximum number of human vehicles n∗ it can stabilize,

safely and efficiently. We will consider this second setting for

the remainder of the article, posing the resulting nonlinear

optimization problem by formalizing the constraints and

optimality conditions.

We make several assumptions and reductions in our work:

• Human vehicle models are homogeneous—all human-

driven vehicles can be approximated by the same vehi-

cle dynamics,

• Human vehicle models are string unstable in some

traffic conditions—there exists an equilibrium point

such that the linearized coefficients of the model (Equa-

tion (3)) fail to satisfy inequality (9) for some pertur-

bation frequency ω,

• All vehicle models are plant stable—bounded distur-

bances in headway experienced by the vehicle do not

result in unbounded deviation from its equilbrium po-

sition, and

• The traffic system is confined to a single-lane ring road

setting and to models without explicit time delays [37].
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B. Optimality conditions

It will be convenient to note the following fact, which

can be algebraically derived by evaluating the derivatives of

|T (jw)|.
Lemma 1 (Critical frequency range): Given linear human

vehicle model (kp, kd, kv), let

ω0 :=

√
kp − kdkv − 1

2
k2v (14)

If the system is string unstable, then |T (jω)| ≥ 1 for

ω ∈ [0,
√
2ω0], with equality at the endpoints, and is stable

otherwise. Furthermore, ‖T (jω)‖∞ occurs at ω = ω0.

With this, we can formulate our optimality conditions for

autonomous vehicle controllers.

Theorem 2 (Stability condition): The maximum number

of vehicles a single autonomous vehicle can string stabilize

is given by

n∗stable =

⌊
min
ω
− log |TR(jω)|
log |TH(jω)|

⌋
, (15)

over ω in the range where the human drivers are string

unstable, i.e., TH(jω) > 1 =⇒ 0 < ω <
√
2ω0. Outside

this range, the system is trivially string stable for sufficient

density of human driven vehicles.

Proof: Consider a string of n human driven cars

followed by a single autonomous vehicle (though the order

of the vehicles does not matter due to the linearity of

the scalar systems). Label the position of the autonomous

vehicle (relative to its equilibrium position) x̃R(t)� X̃R(s).
Furthermore, consider that the behavior of the leading (hu-

man driven) car is governed by its reaction to some input

(disturbance) d(t)� D(s). Then, from Equation (8), we get

the relationship:

X̃R(s) = TR(s)TH(s)nD(s). (16)

By Definition (2), this system is string stable if it at-

tenuates all unstable disturbances; that is, for s = jω,

0 < ω <
√
2ω0:

|TR(s)TH(s)n| ≤ 1 (17)

log |TR(s)|+ log |TH(s)n| ≤ 0 (18)

n ≤ − log |TR(s)|
log |TH(s)| (19)

The maximum number of human driven cars that can be

stabilized under any input disturbance by a given autonomous

car controller TR(·) is then given by the minimum of

Equation (19) across all unstable disturbances, giving our

result.

Theorem 3 (Safety/performance condition): For a given

scaled step perturbation d(t) = βu(t) and headway bound

Δ, the maximum number of vehicles a single autonomous

vehicle can safely and efficiently follow is given by

n∗safe =

⌊
min
ω

log η − log |1− TR(jω)|
log |TH(jω)|

⌋
, (20)

with η := Δ
β and 0 < ω <

√
2ω0, as above.

Note that we are considering a step disturbance here for

ease of notation and analysis, but the theorem holds for

oscillatory and impulse disturbances as well, and is thus

likely to cover the extremes of realistically encountered

perturbations.

Proof: As in the previous proof, we can further consider

the position of the final (human driven) car in the string

x̃N (t)� X̃N (s):

X̃N (s) = TH(s)nD(s), (21)

giving rise to the headway experienced by the autonomous

vehicle hR(t)− h∗ = x̃N (t)− x̃R(t). That is,

X̃N (s)− X̃R(s) = TH(s)n(1− TR(s))D(s). (22)

As these are the final two cars in the traffic string, they

experience the greatest disturbance, having been amplified

along the chain of string-unstable human drivers. If the

autonomous vehicle were earlier in the string, it would ex-

perience a smaller headway deviation. Thus, this guarantees

that the autonomous controller does not worsen safety or

efficiency from an uncontrolled, fully human model.

Then, from Definition (3) and algebra, and noting the

equivalence of ∞ signal and system norms (max values)

under these disturbances,

|TH(s)n(1− TR(s))β
1

s
| < Δ

1

s
(23)

log |TH(s)n|+ log |1− Tr(s)| < log

(
Δ

β

)
, (24)

and the conclusion immediately follows.

C. Optimization problem

Now we present our optimization problem, which selects

autonomous vehicle parameters which are admissible under

both optimality criterion. Given linear human vehicle model

TH and safety parameter η, we would like to optimize for

n∗ = max
TR

min(n∗stable , n
∗
safe) (25)

s.t. TR(s) =
kdrs+ kpr

s2 + (kdr + kvr)s+ kpr
(26)

Definition 4 (Penetration rate): Given the traffic condi-

tion v∗ defining the human CFM TH , the penetration rate

ρ =
1

n∗ + 1
(27)

describes the fraction of uniformly distributed autonomous

vehicles (ensuring one autonomous vehicle per n∗ human

vehicles) necessary to string-stabilize the heterogenous traffic

system at this equilibrium—preventing the formation of stop-

and-go traffic through the attenutation of disturbances—with

a bounded decay in performance given bounded perturba-

tions, where n∗ is the optimal objective value of Prob-

lem (25).
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Fig. 2. For the given human vehicle model and the optimal autonomous
vehicle controller, we vary ω within the unstable region of frequencies
(for the human vehicle) and present the number of vehicles that can
be stabilized (black) or safely handled (red) by the autonomous vehicle.
The two curves are nearly identical, demonstrating that the optimization
procedure successfully chose parameters that optimized for both conditions.
The vertical line denotes the most unstable frequency for the human vehicle
model ω0, so we observe that adding the autonomous vehicle shifts the
critical frequency to the left.

V. NUMERICAL RESULTS

We start by considering a human IDM driver with param-

eters v0 = 33m/s, T = 1.5s, s0 = 2m, a = 0.3m/s2, b =
3m/s2 [38], in traffic conditions defined by v∗ = v0/2. This

defines the human car following model of Equation (1) that

we are using, and gives a linearization with kp, kd, kv =
0.01, 0.18, 0.04.

We use physical constraints to motivate our numerical

setting, restricting our search space over the autonomous

vehicle controller to physically realizable controllers. It is

likely that the largest perturbation in headway that a vehicle

will experience results from lane changing. Typical lane

changes occur at headways of 100 m (in) or 70 m (out) [39],

thereby introducing a perturbation Δhmax ≈ 50 − 70m, or

η < 2. When approaching a stalled car or traffic accident

from free flow at vmax = 40m/s, we see a maximum rate

of change of headway at ḣmax ≈ vmax = 40m/s. Similarly,

when considering accelerating from a dead stop onto an

empty highway with free flow speed vmax = 40m/s, we see

a maximum velocity difference Δvmax ≈ vmax = 40m/s.

Human drivers comfortably accelerate at up to amax ≈
0.5 gee, with slightly higher tolerance for braking than

accelerating [40]. This then gives us maxima:

kp ≈ amax/Δh < 0.1, (28)

kd ≈ amax/ḣmax < 0.2, (29)

kv ≈ amax/Δvmax < 0.2. (30)

We therefore cap our kv < 0.2, giving us an op-

timal autonomous vehicle controller of kp, kd, kv =
0.000, 0.103, 0.200.

At this TH , TR, you can see how n∗stable , n
∗
safe changes

across the range of unstable perturbation frequencies ω in

Figure 2. The optimal controller lies along the asymptote

kv = ηkd of locally optimal autonomous vehicle controllers,

Fig. 3. For the fixed default human vehicle model, two of the three
autonomous vehicle parameters kpr, kdr, kvr are varied while the last
parameter is held constant to the optimal autonomous vehicle controller,
producing a heatmap of the number of human vehicles a single autonomous
vehicle can safely and efficiently stabilize.

as can be seen through the effects on n∗ as we vary the

parameters of TR in Figure 3. This controller is robust

to variations in human driver model as well, as shown in

Figure 4.

Finally, we can consider the system level traffic perspec-

tive through the fundamental diagram in Figure 5. As we vary

the density of traffic in a system defined by the given IDM

human driver model, the uniform flow equilibrium of Equa-

tion (2) defines the resulting flow rate at that equilibrium. In

order to achieve this flow rate though, the system must be

string-stable at that equilibrium point; the formation of stop-

and-go traffic waves would otherwise lower the resulting flow

rate. Thus we can use our problem formulation to evaluate

our optimum autonomous controller to string-stabilize the

traffic system and achieve efficient behavior. As we vary

the traffic conditions, a minimum uniform penetration rate

of ρ = 6% autonomous vehicles is necessary to stabilize

the uniform flow equilibrium in all situations. At lower

penetration rates, denser traffic conditions will still result

in stop-and-go traffic, but the range of string stability is

nonetheless increased from purely human traffic.

VI. CONCLUSIONS AND DISCUSSION

In this article, we present the first analysis of the pen-

etration rate of autonomous vehicles needed to stabilize

traffic with bounded degradation of performance and safety

properties. We derive system-level string stability, safety, and

performance conditions using linearized frequency-domain

analysis, and we pose a nonlinear optimization problem to

solve the multi-objective problem. Numerically, we show that

for typical highway traffic conditions, only a 6% uniform

penetration rate of autonomous vehicles can safely and

efficiently stabilize traffic under all uniform flow conditions.

The optimal controller so discovered lies at kp = 0, defin-

ing an autonomous vehicle controller that is nonresponsive

to the vehicle’s headway. This is an unreasonable condition
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Fig. 4. For the optimal autonomous vehicle controller, two of the three
human vehicle parameters kp, kd, kv are varied while the last parameter
is held constant to the default human model, producing a heatmap of the
number of human vehicles a single autonomous vehicle can safely and
efficiently stabilize. The vertical and horizontal lines denote the default
human model. We cap values, so the gray region denotes either stable
parameters or models that permit more stabilized vehicles than the scale.
We observe that there is a graceful decay of n∗ as the human parameters
vary, and in fact the varying parameters may be beneficial as well.

Fig. 5. The number of human cars a given autonomous vehicle can
safely stabilize varies with traffic conditions. Thus, as the penetration rate
of autonomous vehicle in a human traffic flow increases from 0, a greater
range of equilibrium points of uniform flow become stable. In the above
fundamental diagram, the width and color of the line both represent the
minimum uniform penetration rate of autonomous vehicles necessary to
stabilize that traffic regime. Though we need at least 6% of the cars in this
example to be autonomous to stabilize all flows, fewer than 3% penetration
still results in substantial improvements in stability up to and beyond the
cusp of the curve.

which may result in unsafe behaviors in the presence of

extreme disturbances outside the scope of this paper but

potentially visible in actual traffic systems. As such, we can

mandate kp > 0 in our optimization constraints; this pegs the

results of the optimal controller to the minimum allowable

kp as demonstrated by Figure 3. Furthermore, to handle this

and other extreme road conditions, the autonomous controller

will have to exhibit nonlinear behaviors. We can apply the

derived linearized parameters to a human driving model, e.g.

OVM, to give a better grounded robot controller, or we can

optimize over such driver model parameters directly. This

and similar extensions of the optimization problem presented

in this paper are under current research.

Finally, with the potential availability of greater sensing

capabilities, including the state measurement of multiple

nearby vehicles, much more sophisticated controllers may

be possible to further reduce the penetration rates necessary

to stabilize human traffic flows. Nonetheless, this preliminary

work shows the feasibility of a simple linear controller,

extending basic ACC principles, to have significant impact

in traffic systems.
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