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Abstract—Recent advances in deep reinforcement learning
(RL) offer an opportunity to revisit complex traffic control
problems at the level of vehicle dynamics, with the aim of
learning locally optimal policies (with respect to the policy
parameterization) for a variety of objectives such as matching a
target velocity or minimizing fuel consumption. In this article,
we present a framework called CISTAR (Customized Interface
for SUMO, TraCI, and RLLab) that integrates the widely used
traffic simulator SUMO with a standard deep reinforcement
learning library RLLab. We create an interface allowing for
easy customization of SUMO, allowing users to easily implement
new controllers, heterogeneous experiments, and user-defined
cost functions that depend on arbitrary state variables. We
demonstrate the usage of CISTAR with several benchmark
control and RL examples.

Index Terms—Simulation; deep reinforcement learning; con-
trol; vehicle dynamics

I. INTRODUCTION

Modeling and analysis of traffic dynamics is notoriously

complex and yet is a prerequisite for model-based traffic con-

trol [1], [2]. Researchers classically trade away the complexity

of the model (and thus the realism of the model) in favor of

the tractability of analysis, often with the goal of designing

optimal controllers or other controllers with desirable proper-

ties, such as safety or comfort [3], [4], [5], [6]. Consequently,

results in traffic control can largely be classified as simulation-

based numerical analysis (for example, [7], [8], [9], [10])

or theoretical analysis on simple settings such as assuming

non-oscillatory responses (e.g. [11]) or focusing on a single-

lane ring road (e.g. [12], [13], [14], [15], [16], [17]). In the

present article, we largely focus our discussion on microscopic

longitudinal dynamics, also called car following models [18],

and a variety of single- and multi-lane closed networks, but

our proposed framework largely extends to other dynamics

and settings, such as lateral dynamics [19] and coordinated

behaviors [20].

Deep reinforcement learning (RL) is a powerful tool for

control and has already had demonstrated success in complex

but data-rich problem settings such as Atari games [21], 3D

locomotion and manipulation [22], [23], [24], chess [25],

among others. RL testbeds exist for different problem domains,

such as the Arcade Learning Environment (ALE) for Atari

games [26], DeepMind Lab for a first-person 3D game [27],

OpenAI gym for a variety of control problems [28], FAIR

TorchCraft for Starcraft: Brood War [29], MuJoCo for multi-

joint dynamics with Contact [30], TORCS for a car racing

game [31], among others. DeepMind and Blizzard will col-

laborate to release the Starcraft II AI research environment

[32]. Each of these RL testbeds enables the study of control

through RL of a specific problem domain by taking advantage

of the data-rich setting of simulation. One of the primary goals

of this article is to present a similarly suitable RL testbed for

traffic dynamics by making use of an existing traffic simulator.

The main contributions of this article are as follows:

• We introduce the Customized Interface for SUMO,

TraCI, and RLLab (CISTAR) library, a framework for

reinforcement learning and control experiments for traffic

microsimulation.

• CISTAR integrates the traffic simulator SUMO with a

standard deep reinforcement learning library RLLab.

• CISTAR extends SUMO to support high frequency sim-

ulation and more flexibility in controllers.

• Using CISTAR, we reproduce existing results and demon-

strate new control experiments for single- and multi-

lane circular roads, including homogeneous and non-

homogeneous vehicle types.

• Using CISTAR, we demonstrate the first deep reinforce-

ment learning experiments on traffic at the level of multi-

agent vehicle control.

II. RELATED WORK

A. Deep learning and traffic

Several recent studies incorporated ideas from deep learning

in traffic optimization. Deep learning has been used for traffic

prediction [33], [34] and control [35]. A deep learning archi-

tecture was used in [34] to predict traffic flows, demonstrating

success even during highly nonlinear special events; to learn

features to represent states involving both space and time, [33]

additionally used hierarchical autoencoding in the traffic flow

prediction problem. A multi-agent deep reinforcement learning

algorithm was introduced in [35] to learn a policy for ramp

metering. For additional uses of deep learning in traffic, we

refer the reader to [36], which presents an overview compar-

ing non-neural statistical methods versus neural networks in
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transportation research. These recent results demonstrate that

deep learning and deep reinforcement learning are a promising

approach to traffic problems. Our work aims to further this

by providing a framework for traffic experiments that uses

reinforcement learning for control.

B. Traffic simulators

Traffic microsimulators include Quadstone Paramics [37],

VISSIM [38], [39], AIMSUN [40], MATSIM [41], and SUMO

[42]. The first three are closed-source commercial software,

whereas the latter two are open source software. Each of these

tools are capable of large-scale traffic microsimulation and

can handle a variety of policies and control strategies. Each

tool offers an Application Programming Interface (API) which

permits overriding or extending the default models such as

car following, lane changing, route choice, etc. Each of these

simulators are widely used in the research community. These

tools differ in their precise offerings and features, such as

visualization tools, supported models, and simulation speed.

Because most studies focus their study on a single simulator,

a comprehensive comparison of these tools is unfortunately

lacking.

In our work, we choose to integrate SUMO, an open-source,

extensible, microscopic simulator that can simulate large road

networks. SUMO discretizes time and progresses the simula-

tion for a user-specified timestep; furthermore, because SUMO

is microscopic, individual vehicles are controlled by car fol-

lowing models—functions of the vehicle’s headway, velocity

and the velocity of the preceding vehicle. The acceleration

provided by the car following model is applied as a change

of velocity over the course of the next timestep. SUMO’s car

following models include IDM, IDMM, and Wiedermann.

SUMO has several current issues which limit its suitability

for RL. First, all SUMO built-in car following models are con-

figured with a minimal time headway, τ , that is used to ensure

safety [43], and do not support time delays. Second, SUMO’s

car following models are calibrated for a simulation timestep

of 1.0 seconds, and their behavior for smaller timesteps is

known to produce unnatural behaviors [44] whereas we would

like to simulate at 10-100ms timesteps. Finally, there does

not yet exist an interface between SUMO and RL libraries.

Because the results of an RL experiment rely on the realism

of the model/simulator, we need the traffic models to capture

more realistic fine-grained dynamics, including operating at a

higher granularity (smaller simulation step), with a different

model of time delays, with acceleration-based control, etc.

Our work aims to address each of these limitations. CISTAR

extends SUMO to permit rich custom controllers which may

operate at smaller simulation steps and with time delays. These

richer control actions allow CISTAR to support a larger class

of controllers, thus permitting a more realistic and suitable

testbed for reinforcement learning in traffic dynamics. SUMO

also includes a Python API called TraCI (TRAffic Control

Interface), from which the user can retrieve information about

the vehicles’ current states and issue precise commands to

set the vehicles’ velocities, positions, and lanes. Using this

interface, we can interface SUMO with RL libraries, read out

state information, issue actions, define our own car following

models, etc.

III. PRELIMINARIES

In this section, we describe two well-studied topics, which

are key to understanding CISTAR: longitudinal dynamics [12]

and Markov decision processes [45]. Longitudinal dynamics

describe the forwards-backwards control of vehicle control

models. Markov decision processes is the problem framework

under which reinforcement learning methods optimize poli-

cies.

A. Longitudinal dynamics

Longitudinal dynamics are usually defined by car following

models [12]. Standard car following models (CFMs) are of the

form:

ai = v̇i = f(hi, ḣi, vi), (1)

where the acceleration ai of vehicle i is some typically nonlin-

ear function of hi, ḣi, vi, which are respectively the headway,

relative velocity, and velocity for vehicle i. A general model

may include time delays from the input signals hi, ḣi, vi to

the resulting ouput acceleration ai. Example CFMs include the

Intelligent Driver Model (IDM) [46] and the Optimal Velocity

Model (OVM) [47], [48]. Our presented system implements

several known CFMs and provides an easy way to implement

custom CFMs.

B. Markov decision processes and reinforcement learning

Reinforcement learning problems are typically studied in the

framework of Markov decision processes (MDPs) [45], [49].

A MDP is defined by the tuple (S,A, P, r, ρ0, γ, T ), where

S is a (possibly infinite) set of states, A is a set of actions,

P : S×A×S → R≥0 is the transition probability distribution,

r : S × A → R is the reward function, ρ0 : S → R≥0 is the

initial state distribution, γ ∈ (0, 1] is the discount factor, and

T is the horizon.

Reinforcement learning addresses the problem of how

agents should learn to take actions to maximize cumulative

reward through interactions with the environment. We use

a class of reinforcement learning algorithms called policy

gradient methods [50], which optimize a stochastic policy

πθ : S×A → R≥0. OpenAI’s RLLab is an open source frame-

work that facilitates running and evaluating reinforcement

learning algorithms on a variety of different scenarios, from

classic tasks such as cartpole balancing to more complicated

tasks such as 3D humanoid locomotion [51]. To perform an

experiment with RLLab, we must first define an environment

encapsulating the MDP or problem setting, such as velocity

matching on a ring road.

In the next section, we introduce CISTAR, which defines

environments to capture various traffic problem settings and

uses RL libraries to achieve user-defined learning goals.
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IV. OVERVIEW OF CISTAR

CISTAR encapsulates SUMO via TraCI to permit the def-

inition, training, and execution of traffic MDPs in RLLab.

After initializing the simulation with a number of vehicles in

some initial configuration, RLLab collects samples by stepping

through the simulation and then resets the simulation when

the simulation is terminated. In each step, the vehicles are

provided actions through a pre-specified controller or through

a learned policy. These actions are then applied via TraCI and

the simulation progresses. At the end of an episode, RLLab

issues a reset command to the environment, which returns

vehicles to their initial position. The interactions between

CISTAR, SUMO/TraCI, and RLLab are illustrated in Figure 1.

CISTAR can be used to perform purely control theoretic

experiments, by using only pre-specified controllers for issu-

ing actions; or CISTAR can be used for experiments with

a mixture of pre-specified and learned controllers, such as

heterogeneous or mixed autonomy experiments. Vehicles may

have both a longitudinal and a lateral controller, with longi-

tudinal safety guaranteed by supported fail-safe models (see

Section V-A).

Fig. 1: CISTAR Process Diagram.

A. Architecture of CISTAR

An experiment using CISTAR requires defining two com-

ponents: a scenario and an environment. These and several

supporting components as well as their interactions are sum-

marized in Figure 2.

Fig. 2: CISTAR Architecture (See Section IV-A).

The scenario for an experiment specifies network configu-

ration (i.e. shape and attributes, e.g. two-lane loop road with

circumference 200m). Based on the specifications provided,

the net and configuration files needed by SUMO are generated.

The user also specifies the number and types of vehicles (car

following model and a lane-change controller), which will be

placed in the scenario.

The generator is a predefined class, which allows for rapid

generation of scenarios with user-defined sizes, shapes, and

configurations. The experiments presented in this article use a

large loop road generated by specifying the number of lanes

and ring circumference.

The environment encodes the MDP, including functions

to step through the simulation, retrieve the state, sample and

apply actions, compute the reward, and reset the simulation.

The environment is updated at each timestep of the simulation

and, importantly, stores each vehicle’s state (e.g. position and

velocity). Information from the environment is provided to a

controller or passed to RLLab to determine an action for a

vehicle to apply, e.g. an acceleration. Note that the amount

of information provided to either RL or to a controller can be

restricted as desired, thus allowing fully observable or partially

observable MDPs. The experiments presented in this article

are fully observed (full knowledge of all vehicle positions and

velocities).

When provided with actions to apply, CISTAR calls the

action applicator which uses TraCI to enact the action

on the vehicles. Because TraCI can only set velocities, not

accelerations, we convert the acceleration into an instantaneous

δv = α·dt, where α is the acceleration and dt is the simulation

time step-size.

V. FEATURES OF CISTAR

A. Fail-safes

CISTAR supplements its car following models with safe

driving rules that prevent the inherently unstable car following

models from crashing. As SUMO experiments terminate when

a collision occurs, CISTAR provides a fail-safe mechanism,

called the final position rule, which runs constantly alongside
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other controllers. Fail-safes are passed in the action com-

manded by the vehicle controller, regardless of whether it

is an action specified by RL or a control model. Fail-safes

are a standard feature in any traffic simulator that is required

to handle large perturbations and string unstable traffic. The

conservativeness of the fail-safe affects the braking behavior

of the traffic. In general, fail-safes operate according to the

principle of maintaining a minimum safe distance from the

leading vehicle where the maximum acceleration and decel-

eration of the leading vehicle is stochastically generated [52],

[53]. The current support for fail-safes in CISTAR does not

account for this second aspect and assumes that all vehicles

are equipped with the same deceleration.

Final Position Rule This fail-safe aims to keep a velocity such

that if the preceding vehicle suddenly starts braking with max

deceleration a, then even if the following vehicle has a delay

τ it can still slow down such that it comes to rest at the final

position of the rear bumper of the preceding vehicle. If the pre-

ceding vehicle is initially at position xi−1(0), and decelerates

maximally, it will come to rest at position xi−1(0) +
v2
i−1(0)

2a .

Because the fail-safe issues the maximum velocity, if the ego

vehicle has delay τ , it will first travel a distance of vsafeτ and

then begins to brake with maximum deceleration, which brings

it to rest at position xi(0) + vsafe ·
(
τ + vsafe

2a

)
.

B. Longitudinal controllers

CISTAR supports a variety of car following models, in-

cluding default models from SUMO and custom models not

provided by SUMO. Each model specifies the acceleration for

a vehicle at a given time, which is commanded to that vehicle

for the next time-step using TraCI. Controllers with arbitrary

time delays between perception and action are supported in

CISTAR. Delays are implemented by storing control actions

in a queue. For delayed controllers, a new action is computed

using the state at each timestep and enqueued, and an ac-

tion corresponding to some previous state is dequeued and

commanded. Descriptions of supported car-following models

follow below.

1) Second-order linear model: The first, and simplest, car

following model implemented is the forward-looking car fol-

lowing model specified in [12]. The model specifies the accel-

eration of vehicle i as a function of a vehicle’s current position

and velocity, as well as the position and velocity of the vehicle

ahead. Thus: v̇i = kd(di−ddes)+kv(vi−1−vi)+kc(vi−vdes)
where vi, xi are the velocity and position of the i-th vehicle,

di := xi−1 − xi is the headway for the i-th vehicle, kd, kc, kv
are controller gains for the difference between the distance to

the leading car and the desired distance, relative velocity, and

the difference between current velocity and desired velocity,

respectively. In addition, ddes, vdes are the desired headways

and velocities respectively.

2) Optimal Velocity Model (OVM): Another car following

model implemented in CISTAR is the optimal velocity model

from [14]. A variety of optimal velocity functions exist for

use in specifying car following models [54], [1]; [14] uses

a cosine-based function to define optimal velocity V (h) as a

function of headway:

V (h) =

⎧⎪⎨
⎪⎩

0 h ≤ hst

vmax

2 (1− cos(π h−hst

hgo
− hst)) hst < h < hgo

vmax h ≥ hgo

The values hst, hgo correspond to headway thresholds for

choosing an optimal velocity, so that for headways below hst,

the optimal velocity is 0, and for headways above hgo, the

optimal velocity is some maximum velocity vmax. The optimal

velocity transitions using a cosine function for headways

between hst and hgo. V (h) is used in the control law for

the acceleration of the i-th vehicle, where v̇i = α[V (hi) −
vi]+β[vi−1−vi] at each timestep. This controller can also be

implemented with delay to simulate perception and reaction

times for human drivers, in which case v̇i(t) would be a

function of states hi(t− τ), vi(t− τ), vi−1(t− τ).

3) Bilateral control model (BCM): The bilateral controller

presented by [15], [16] considers not only the relation of a

subject vehicle to the vehicle ahead but also to the vehicle

behind it. In their controller, the subject vehicle’s acceleration

depends on the distance and velocity difference to both the

vehicle ahead and behind, with

v̇i = kdhi + kv((vi−1 − vi)− (vi − vi+1)) + kc(vi − vdes)

where hi := (xi−1 − xi)− (xi − xi+1).

C. Lateral controllers

SUMO has lateral dynamics models dictating when and

how to lane change [55]; however, to extend lateral control

to the an RL framework, CISTAR permits the easy design

of new and higher fidelity lane changing models. The current

implementation of CISTAR includes a proof of concept lane-

changing models in which vehicles change lanes stochastically

when adjacent lanes satisfy a set of constraints. Vehicles in

CISTAR do not check to change lanes at each timestep, as

that might lead to an excessive number of lane changes.

Instead, at some time interval, the vehicle determines if it

should lane change. This rudimentary controller provides an

initial scaffold for supporting more sophisticated lane changing

behavior, which is the subject of ongoing work.

The proof of concept lane-changing model iterates through

each adjacent lane, determining which lane offers the highest

speed. If the subject vehicle is not in the optimal lane, a lane-

change maneuver to the optimal lane is commanded using

TraCI with some probability.

D. Heterogeneous settings

CISTAR supports traffic settings with heterogeneous vehicle

types, such as those with different controllers or parameters.

Additionally, simulations can contain both RL-controlled ve-

hicles and control-based vehicles. This permits the use of

CISTAR for mixed autonomy experiments.
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E. Perturbations

Arbitrary vehicle-level perturbations can be specified in

an experiment. For example, the experiments described in

Section VI-B randomly choose and perturb a vehicle by

overriding its control inputs and commanding a deceleration

for some duration.

F. Markov decision processes (MDPs)

CISTAR supports a large range of traffic MDPs, including

custom reward functions, full and partially observed states, full

and partial controlability, noisy observations, etc. For instance,

the controller may observe only local information from only

the preceding vehicle, only nearby vehicles, or all vehicles.

The reward function can be any function of vehicle speed,

position, fuel consumption, acceleration, distance elapsed, etc.

VI. CISTAR USE CASES

This section details various example experiments using CIS-

TAR, demonstrating the capability of the system to simulate

homogeneous and mixed vehicle traffic in ring-road settings

from arbitrary initial conditions and including perturbations.

A. Experimental Scenario

In the well-known result of [56], Sugiyama demonstrates

in a physical experiment on a single-lane road of length

230m that 22 vehicles traveling at 8.3m/s produce backwards

propagating waves, causing part of the traffic to come to a

complete stop. Each experiment ran for 100 seconds. As a

demonstrative example, we aim to reproduce their experiment

in CISTAR. We additionally test various iterations of it,

observing the resulting behavior.

B. Control experiments

1) OVM from uniform flow (Figure 3): The first experiment

runs the Sugiyama setup from an initial state in which all

22 vehicles were spaced evenly around the ring road and

start with the same velocity (also called uniform flow). Each

of the vehicles was using a Optimal Vehicle Model (OVM)

controller, as described in the section on controllers above.

The experiment begins from a stopped state, gets up to speed,

and proceeds free of traffic shockwaves for its duration.

Fig. 3: OVM from uniform flow, showing an average speed of 4.87 m/s
across all vehicles.

2) OVM from a nonuniform flow state (Figure 4): This

experiment simulates the Sugiyama setup but from a non-

uniform initial configuration. Starting with the first vehicle, the

subsequent position of each vehicle is drawn from a Gaussian

distribution with mean equal to the length of track divided

by number of vehicles and a standard deviation given by one

fifth the mean. The unstable starting state also incorporates

a bunching factor, in which no vehicles are placed on some

segment of the track, with the length of that segment being a

user-defined variable. All 22 vehicles use the OVM controller.

Instability is apparent from the beginning, with traffic rapidly

degrading into traffic shockwaves and failing to recover.

Fig. 4: OVM from a nonuniform state, showing stop-and-go traffic with an
average speed of 7.8 m/s.

3) OVM with a perturbation (Figure 5): In this experiment,

22 OVM vehicles are run from a uniform, evenly-spaced

starting state. No traffic shockwaves form until the system is

perturbed 9 seconds into the experiment, once the vehicles

have roughly reached their equilibrium velocities from the

unperturbed scenario. One vehicle is randomly chosen and

an acceleration of −5 m/s2 is applied for 1.5 seconds. The

braking of that vehicle forces the vehicles behind it to slow

down as well, and the system degrades into stop-and-go traffic.

Fig. 5: OVM with a perturbation, breaking down from uniform

flow into stop-and-go traffic with an average speed of 7.5 m/s.

4) BCM with a perturbation (Figure 6): 22 vehicles imple-

menting the bilateral car following model (BCM), described in

the controllers section, are implemented in this simulation. The

simulation begins from a uniform, evenly-spaced starting state.

As with the experiment above, a random vehicle is perturbed

at an acceleration of −5m/s2, 9 seconds into the simulation
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for 1.5 seconds. Some braking results, but unlike the OVM

case described above, the BCM vehicles recover from this

perturbation and traffic returns to uniform flow shortly after.

Fig. 6: BCM with a perturbation, showing an average speed

of 7.9 m/s.

5) BCM from an nonuniform state (Figure 7): Again, 22

BCM vehicles are run in this simulation, but from the same

nonuniform flow starting state as in the nonuniform flow OVM

case, in which vehicles are spaced randomly subject to a

bunching factor. There is some initial instability and small

traffic shockwaves, but again the BCM vehicles recover from

this non-stable state and return to uniform flow.

Fig. 7: BCM from a nonuniform state, showing an average

speed of 7.9 m/s.

6) Mixed BCM/OVM from a nonuniform flow state (Fig-
ure 8): Here, 11 BCM vehicles and 11 OVM vehicles be-

gin from a nonuniform flow, randomly spaced, and bunched

starting state as described above. The proportion of bilateral

control vehicles proves sufficient to prevent the stop-and-go

waves seen in the unstable OVM scenario. Some velocity vari-

ation persists, however, unlike the full-BCM unstable scenario

which returns to a completely uniform flow state.

7) Multi-lane experiment (Figure 9): A set of preliminary

multi-lane experiments implementing the rudimentary lane-

changing controller were also run, one of which is pictured

below. In the experiment, all vehicles were initialized in the

outer lane of a 200 meter two-lane road, and, as expected,

a set of vehicles set to higher speeds changed into the inner

lane, moving faster than cars in the inner lane.

Fig. 8: BCM/OVM, nonuniform state, showing an average

speed of 7.1 m/s.

Fig. 9: A sample multi-lane experiment

C. Reinforcement learning experiments

CISTAR permits configuring and running reinforcement

learning experiments on traffic problems through RLLab.

RLLab enables the easy tuning of the baseline, policy parame-

terization, and numerous hyperparameters such as path length

and batch size. In addition, CISTAR Scenarios allow easy

formulation of different MDPs for studying different traffic

problems, such as optimizing for different rewards like fuel

consumption or matching a target speed. The following sample

experiment use an RL algorithm called Trust Region Policy

Optimization (TRPO) [23] due to its high performance on a

number of reinforcement learning benchmarks [51], including

in a traffic application [35].

1) Sample Experiment: target velocity: In this sample ex-

periment, we demonstrate as a proof-of-concept a problem

which can also be solved using linear control. All vehicles

in the setup are controllable, and the goal is to control all

vehicles to drive at a target velocity, from a given initial

condition. The state of the MDP is represented by the current

velocity of all vehicles in the system, and the action is

represented by an instantaneous velocity that will be applied

in the following timestep. The reward signal is the mean-

squared error of the current velocity of all vehicles with the

target velocity. The policy is a Gaussian multi-layer perceptron

represented by a single-layer 16-neuron neural network, and

the hyperparameters were tuned accordingly. For a simple
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setup of four vehicles, we observe in Figure 10 that the reward

signal converges to near zero in 600 iterations, indicating that

the vehicles successfully learn to drive at a target velocity. For

a more congested track with 25 vehicles, the space limitation

prevents the policy from learning efficiently, as can be seen

in Figure 11 and Figure 12. Training a policy efficiently on a

congested environment is the subject of ongoing work.

Fig. 10: The convergence curve for the target velocity reinforcement learning
experiment indicates convergence to near-zero reward (indicating matched
target velocity) in 600 training iterations.

Fig. 11: Spacetime diagram for a very congested track. The learned policy
can barely move cars since they are so close.

Fig. 12: The discounted reward for a congested track shows improvement
in a policy; however, the reward is still very far from 0.

VII. CONCLUSION

CISTAR is a tool that quickly and efficiently facilitates

simulating complex traffic settings built on widely-used open

source tools. Researchers can use it to exercise fine-grained

control over vehicles in simulation and test a variety of differ-

ent controllers against each other. RLLab integration enables

the creation of environments in which teams of autonomous

vehicles can learn and execute policies in various settings.

The specific use of CISTAR to achieve locally optimal

(with respect to the policy parameterization) behaviors for

teams of connected automated vehicles on a variety of traffic

“tasks” is the subject of our ongoing research, including on

ring roads, merges, intersections, etc. Additional ongoing work

includes further development of CISTAR features, including

more realistic lane-changing models, multi-lane safety, and

preparation for an open-source release of CISTAR. Other

future work include establishing a set of benchmark tasks

(similar in spirit to [51]) for a wide variety of traffic scenarios

and integration of CISTAR with OpenAI gym [28] for further

compatibility with reinforcement learning tools.
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