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Abstract The design of new robots is often a time-intensive task requiring multi-
disciplinary expertise, making it difficult to create custom robots on demand. To
help address these issues, this work presents an integrated end-to-end system for
rapidly creating printable robots from a Structured English description of desired
behavior. Linear temporal logic (LTL) is used to formally represent the functional
requirements from a structured task specification, and a modular component library
is used to ground the propositions and generate structural specifications; complete
mechanical, electrical, and software designs are then automatically synthesized. The
ability and versatility of this system are demonstrated by sample robots designed in
this manner.

1 Introduction

Although robots have become prevalent in academic and industrial applications,
there is a knowledge barrier which prevents them from fully integrating into daily
life. The creation of robots typically requires deep understanding of the available
tools as well as the expertise to combine parts in a way that will achieve some
desired behavior. Due to this intensive methodology, a discrepancy often arises be-
tween the end users and the robot creators, leading to general-purpose robots being
created before a task is fully specified.

The long-term vision is to instead enable the creation of custom personal robots
on-demand by encapsulating the needed low-level knowledge into computational
tools that can automatically address a user’s high-level robotic needs. Typical end
users will have a task that they want the robot to perform and an understanding of
the task requirements, but may not be able to construct or even assemble integrated
programmed electromechanical mechanisms to realize a solution. This paper there-
fore moves towards a system that can compile a high level behavioral description
into a completely fabricable robot design including software.
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This work improves and expands the robot compiler system presented in [18].
Whereas the earlier system required a user to provide the complete structural spec-
ification for a robot design, from the selection of components to their connectivity
and subsequent geometric layout, the system presented herein accepts a more in-
tuitive functional specification as initial input – a description of the relationships
between atomic robot action primitives. The selection of components from a library
is then aided by automated filtering, and a geometric layout is generated from basic
positional constraints. Connectivity and parameter relationships are automatically
derived from the generated geometric layout and robot controller. Furthermore, the
system presented here enhances design iteration by allowing users to simulate the
robot controller prior to fabrication.

2 Problem Formulation and Contributions

The goal of this work is to be able to generate a complete integrated design
and controller for a custom robot on demand. To minimize the requirements on
an end user, the inputs to the system must be as high level as possible, with the
automation of low-level decisions. The process begins with a functional description
of the desired behavior, and ends with a programmed printed electromechanical
machine that executes the described task. The presented approach decomposes the
robot design process into a series of stages that facilitates rapid prototyping and
design iteration.

To define the desired behavior, the user first writes a functional specification, or
task specification, in Structured English [14], capturing the requirements and goals
of the robot. Though not to the level of natural language programming, this al-
lows a casual user to describe rather than command how the robot should operate
through the use of primitive elements called propositions. The ability to decompose
a desired task solution into this functional specification is the only technical require-
ment on the user; no other mechanical, electrical, or computer engineering skills are
assumed. The input specification maps directly into Linear Temporal Logic (LTL)
formulas, which are the input to a controller synthesis algorithm [4]. If there exists a
finite state machine capable of achieving the goals given an adversarial environment,
a controller will be generated.

The propositions of this specification are then used to create a structural specifi-
cation – a specification used to build the custom robot. The structural specification
is constructed by mapping the propositions to parameterized robotic building blocks
drawn from a robot component library. The system filters the library to recommend
components appropriate to each proposition, aiding the user in grounding the spec-
ification. In addition, the system assesses the mapped propositions for possible be-
havioral conflicts, correcting the functional specification as needed. Depending on
the components chosen by the user, a single functional specification may generate
varied robot configurations that accomplish the same goal. The selected compo-
nents are then automatically configured and connected, though advanced users can
edit and create custom configurations. The result is a parameterized robot design
capable of accomplishing the task.
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Upon setting desired parameters, the structural specification can be compiled
to synthesize printable mechanical fabrication files, electrical wiring instructions,
and code for the custom robot. The robot controller generated from the functional
specification can be analyzed in simulation, then converted to microcontroller code
and directly programmed onto the robot. Once the user has built the robot with the
given instructions, the desired behavior will be carried out by the created robot.

The full algorithm for creating a robot from a Structured English specification is
described in pseudocode listing 1.

Algorithm 1 Robot creation from functional specifications
1: Input Structured English specification file
2: Convert Structured English into LTL
3: FSM← Compile LTL into controller automaton

4: L← Load Component library
5: G← /0 . Grounding list
6: A← Filter(L, dataConsumers) . Actuators
7: for all a ∈ FSM[actuators] do
8: if a requires physical output then
9: A∗← Filter(A, hasMechanicalPorts)

10: else
11: A∗← Filter(A, ¬hasMechanicalPorts)
12: end if
13: c← User select from A∗
14: G := G∪{Ground(a,c)}
15: end for
16: S← Filter(L, dataGenerators) . Sensors
17: for all s ∈ FSM[sensors] do
18: c← User select from S
19: G := G∪{Ground(s,c)}
20: end for

21: Component← Core(FSM)
22: for all g ∈ G do
23: if g.component has MechanicalPort then
24: Attach(Component, g.component.structure)
25: end if
26: Connect(Component, g.component.signal)
27: end for

28: Save Component as structural specification
29: Output fabrication files for Component

The particular contributions of this work are:

• a process for grounding the propositions of an LTL specification to components
from a design library to generate a user-guided robot configuration,

• automatic generation of a complete structural specification, including user-guided
physical layout and automated controller synthesis, for the compilation of inte-
grated robot designs,

• a process to detect potential behavioral conflicts during the proposition ground-
ing process, and to automatically correct the LTL specification accordingly,
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• filtering algorithms to simplify user interactions with the robot compiler API,
• an implementation of all of the above into an integrated end-to-end system gen-

erating robots from a Structured English task description, and
• sample robots generated using the system.

3 Related work

3.1 Functional specification

There has been an increasing interest in the automatic construction of provably-
correct robot controllers from high-level or temporal logic task specifications in the
robotics community. These controllers, if successfully synthesized, will behave as
specified in the mission statements.

The synthesis and execution of these controllers from temporal logic specifi-
cations have been shown by [12, 6]. Groups have since tackled a variety of chal-
lenges using these controllers, such as the problem of a changing workspace during
controller execution [16, 1], conducting motion planning for robots given tempo-
ral goals [2], or generating optimized robot trajectories from temporal logic task
specifications [24]. These controllers are also used to control multiple robots [11].

The AI and planning community also has planning languages, from STRIPS [7]
to PDDL [17] and more extensions, to create functional specification for machines.
Using the planning languages, a problem, or functional specification, is defined and
solved with the composition of different actions that each consist of preconditions
or post-conditions. The generated plans are similar to the controllers generated from
high-level task specifications. In this paper, we use high-level task specifications to
generate provably-correct robot controllers out of preference.

The functional specification system for this work stems mostly from [13]. Given
a robot model and its environment, controllers that satisfy high-level task speci-
fications are composed automatically. The synthesized controllers also respond to
different environment behaviors during controller execution.

3.2 Robot creation

There has previously been substantial work regarding processes to fabricate
robots. For example, robots have been developed from 2D processes [3, 19, 22]
using a range of materials at many different size scales. Some of these methods
have also been applied to rapid prototyping [9], although the design phase typically
still requires significant time and expertise. Efforts have been made to automate the
decomposition of 3D shapes into 2D fold patterns [5, 15, 23], but these often do not
address compliant or kinematic structures. Furthermore, these works remain within
the realm of designing desired structures rather than abstracting the design input to
a task-based level.

There has also been significant work on modular robotic systems and behavior
[26, 25, 21, 10]. While these systems provide substantial configurational flexibility,
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modular robots often lack the specialized physical components to address specific
behavioral tasks.

This work builds most directly upon the robot compiler presented in [18], which
describes a system for generating integrated mechanical, electrical, and software de-
signs for custom robots using a modular component library. The system is extended
here by abstracting the user input to a higher level: instead of starting with struc-
tural specifications, the user can now begin with a desired behavioral task. Once
this high-level task has been processed to create functional requirements, the robot
compiler’s component library and computational tools are used to generate fully
functional origami-inspired foldable robots.

4 Design flow

To facilitate the rapid prototyping of custom robots from a description of desired
behavior, the proposed approach here creates a user-friendly environment by provid-
ing a suite of integrated tools that break the process described in Algorithm 1 into a
series of well-defined, computer-aided stages, illustrated in Figure 1. To detail this
process, we will consider the following example:

Example 1. The user wants to build a robot that can conduct a pick-and-place
grasper task. When the robot receives a request from the user, it will move to a
pick-up location and wait for an object to be presented. The robot will then pick up
the object, return to the original position, release the object, and inform the user that
it has completed the task.

Fig. 1: The system aids robot
design by decomposing the
procedure into a series of
manageable stages. The pro-
cess can also become itera-
tive at each stage, using feed-
back from simulation or fab-
ricated devices to encourage
rapid prototyping. The dotted
yellow box contains the pre-
vious work from [18], em-
ployed by the system in this
paper.

4.1 Behavioral description to functional specification

To create a custom robot from a description of desired behavior, the user starts
by writing a mission specification for the task to be conducted. The specification of
Example 1 is shown in Figure 2. Using the Linear Temporal Logic MissiOn Planning
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Fig. 2: The desired behavior
of a robotic grasper can be
cast into Structured English,
from which a finite state ma-
chine is automatically gener-
ated and a functional descrip-
tion is naturally extracted.

toolkit (LTLMoP) [8], the user can write a specification in Structured English by first
defining different types of binary propositions. These propositions are abstracted
from the robot location and actions and its environment. The propositions can be
divided into four different types:

• Region propositions: If a map is given to the robot, the map can be decomposed
into different regions, with each region being one proposition. During the con-
troller execution, only one of the region propositions is true at any given time,
representing the current location of the robot. In Example 1, there are no region
propositions for simplicity.

• Sensor propositions: These are propositions abstracted from the robot’s sur-
rounding environment. In Example 1, the presence of an object is abstracted
into a proposition called “seeObject d” that is true when an object is observed
and false otherwise. Note that even though these propositions describe different
sensing capabilities of the robot, they are independent of how this capability is
implemented on the custom robot; the propositions specify the functionality of
the component rather than the actual structural component. In Example 1, “user-
Summons d” is also a sensor proposition.

• Actuator propositions: These are propositions abstracted from the possible ac-
tions of the robot. In Example 1, activating an actuator proposition “move-
ToSource m” specifies that the robot should move to the pick-up location (and if
the proposition is deactivated it implies the robot should be at the drop-off loca-
tion). As with the sensor propositions, these actions are functional rather than
structural and therefore independent of implementation; for example, a robot
with legs may move differently than a robot with wheels. In Example 1, “pick-
UpObject m” and “indicateComplete ud” are also actuator propositions.

• Custom propositions: These are propositions that are directly linked to neither
robot sensing nor actions but that are necessary for specifying more complex
behaviors. In Example 1, once “userSummons d” becomes true, the proposition
“waitingForObject” becomes and remains true until “pickUpObject m” is true.

Using these propositions, the user can follow the grammar outlined in [14] to
write a specification, and a robot controller can be generated with the synthesis al-
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gorithm in [4]. This correct-by-construction robot controller, in the form of a finite-
state machine, will be automatically generated using the toolkit if the mission state-
ment from the user is feasible regardless of how the environment behaves. The finite
state machine generated for Example 1 can be found in the supplementary material
at http://web.mit.edu/mehtank/www/isrr2015/.

Once a controller is created, the finite state machine can be evaluated with an
integrated simulation engine in which sensors can be interactively triggered and the
proposition states can be visualized. A sample visualization of the engine is shown
in Figure 3 for Example 1. This facilitates an iterative process in which the user
can immediately see how the robot would behave and adjust the specification or
functional requirements accordingly.

Fig. 3: The generated finite state machine can be simulated to ensure desired behavior and en-
courage iterative design. Here, the behavior of a pick-and-place grasper is being simulated. The
simulation displays the number of state changes, the time changes occur, and the status of the
propositions.

4.2 Functional description to structural specifications

4.2.1 Grounding

Once a functional description, or specification, of the robot has been obtained
from the behavioral description, a physical instantiation of the robot that achieves
the target task must be determined. In particular, the action and sensing tasks to
be performed by the robot can now be grounded to available robot components to
generate a structural description of the robot.

To ground the functional propositions to structural components, the grounding
editor in the toolkit, modified from [8] for robot creation as shown in Figure 4, first
retrieves the library of possible modular robotic components from the robot com-
piler [18]. These components include basic building blocks as well as previously
constructed assemblies, each designed to implement a specific behavior. Each com-
ponent in the library encapsulates the design and fabrication information relevant to
the component, including the mechanical structure, the electrical properties and the
software of the component, and is parameterized to allow customizability.

The components are currently divided into three types: mechanical components,
which require constructed structural elements to interface an electromechanical
transducer with the environment; device components, which are discrete devices

http://web.mit.edu/mehtank/www/isrr2015/
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Fig. 4: The functional description can be converted to a structural description by selecting modular
components from a robot library for each action and sensor proposition. Filtered lists of possibili-
ties are automatically provided, and the user can choose to customize them by setting parameters
or simply accept the default values.

with a completely self-contained action; and UI components, which are purely vir-
tual components that include smartphone interface elements such as sliders or toggle
switches.A user can specify desired possible component type(s) for proposition by
suffixing its name; based on that suffix, the grounding editor displays a filtered list
of allowable components. For the case of Example 1, a list of mechanical actu-
ator components will be shown for the proposition pickUpObject m, while a list
of device and UI actuator components will be shown for the actuator proposition
indicateComplete ud.

The user can then ground each proposition to one of the available components on
the filtered list to obtain the desired actions and sensing capabilities. It is possible
that no library component can adequately satisfy a particular proposition, indicat-
ing that the proposition is too complex given the existing contents of the library.
In this case, the user can either modify the original specification to decompose that
proposition into simpler constructs, or create a new component to satisfy the needed
behavior. In the latter case, the user would write a new functional specification to
define the needed component in terms of simpler propositions, and adding the suc-
cessful design back into the library.

When a component is chosen from the library, a list of the component parameters
is also presented so the user can customize the component if needed. Through this
process, a mapping is created between the propositions and the robot components.
More specifically, each actuator and sensor proposition is assigned to a port on a
component.
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It is possible to map more than one proposition to a given component. To ensure
conflicting behaviors do not occur, the mapping interface evaluates each mapped
proposition and modifies the original functional specification to include mutual ex-
clusions of propositions mapped to the same component. The user is then informed
of this modification so they can ensure that the desired behavior is still achieved.
The grounding editor creates a close-loop design process by providing feedback to
the user through amendments to the functional specification based on the structural
specification. With the grounding editor, not only the functional specification af-
fects the structural specification, but the structural specification set by the user also
changes the functional specification.

When the compiler processes the design, it will automatically insert multiplex-
ers as appropriate to ensure that the correct command is sent to the component. It
should also be noted that some of the components employ analog signals; to meet
the boolean requirements of the generated controller, analog sensors get thresholded
before becoming inputs to the finite state machine, while the binary actuator com-
mands from the controller are scaled to a user-specified analog value before being
applied to the device.

Some possible groundings of propositions in Example 1 are shown in Figure 5.
The conversion of functional description to structural specification is aided by the
toolkit but is ultimately chosen by the user; the user asserts control over the design
according to personal preference and task-specific requirements, such as environ-
mental consideration and component availability. Since there are often many com-
ponents which can be grounded to the same proposition, many different robots can
result from the same functional description. For example, a human-generated input
may be mapped to a button, a microphone, or a UI element, while an indicator action
may be mapped to a light, a buzzer, or a flag waver. This approach simplifies and
guides the robot design process for novice users without restricting expert users.

Fig. 5: For each functional
proposition needed for the
robotic grasper, there are nu-
merous possible robot com-
ponents in the library that can
be used for implementation.
Here, a few such options are
shown and the solid lines in-
dicate those chosen for the
current experiment.

4.2.2 Mechanical connections

A structural specification also requires the geometric layout of the physical com-
ponents into a single integrated electromechanical device. Though the design space
of geometric configurations can get intractably large, the system once again aids a
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novice user by presenting a reduced set of options to handle general cases. An expert
user can bypass the filter and create arbitrary mechanical connections constrained
only by available interface points designed to limit component collision.

The mechanical-type components preferentially presented for grounding are de-
signed to mostly fit into a rectangular prism bounding box. This allows for physical
composition by tiling the selected components into orthogonal regions. The user can
select whether a particular component belongs in the front, back, left, right, or center
of the robot; the system then iterates through the full list of mechanical components
and appends them onto the core controller module, growing the robot as it goes.
Components with parameterized dimensions get scaled to fit the entire collection.

In a similar manner, the remaining non-mechanical device-type components then
get mounted on any exposed face of the robot. The user can specify whether the
device should be facing forwards, backwards, left, right, up, or down, and the system
will mount the device onto the respective structures assembled in the previous step.

4.3 Integrated robot fabrication

Once the complete structural specifications have been generated, the robot com-
piler processes the modular design into design files for the complete robot [18],
producing mechanical fabrication files, electrical wiring instructions, and micro-
controller code.

The mechanical structure is fabricated using an origami-inspired cut-and-fold
process: the generated fabrication file gets sent to a desktop vinyl cutter to be cut
from a 2D sheet of plastic, and the user then follows the folding instructions and
the generated wiring instructions to fabricate the robot. Finally, the automatically
generated robot software can be loaded onto the main controller, ranging from low
level drivers to the implementation of the finite state machine created from the LTL
specification.

The robot can then simply be powered on to achieve the task specifications ini-
tially provided by the user.

5 Assumptions, Generalizations and Guarantees

5.1 Functional specification

We consider functional specifications where the lexicon, or the set of words that
can be used, corresponds to physical and computational components of a possible
robot. In this paper, specifications are written in Structured English which has a
deterministic and well defined grammar [14]. This grammar allows for the spec-
ification of safety constraints, goals and conditional expressions. The design flow
described in this paper easily generalizes to functional specifications given in natu-
ral language as long as the natural language utterance can be represented formally
using propositions that can be grounded, such as the work in [20]. In future work,
we will leverage natural language processing tools to enrich the expressivity and
ease of use of the design tools.
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5.2 Grounding propositions to computational and physical
components

The current process allows a user to map more than one proposition to a sin-
gle component. This may be done by the user if different propositions are in-
tended to dictate different behaviors for the same component. As an example, the
user may ground the propositions secureObject and releaseObject to the same
physical component Gripper, with the intent of having the gripper open when
releaseObject is true and having the gripper close when secureObject is true.
However, a problem may arise if the structured English specification allows both
secureObject and releaseObject to be true simultaneously, resulting in contra-
dictory commands to the same physical component, which will prevent the robot
from achieving the desired behavior and may damage the robot.

The grounding interface addresses this issue by evaluating the grounded propo-
sitions and assessing which propositions (if any) have been grounded to the same
component. The system then appends mutual exclusion clauses to the structured
English specification so that the propositions may not both be true simultaneously,
alerting the user to the change. This process is demonstrated with the Fetch Robot
case study described in Section 6. When parsing the specification into complete
robot designs, the compiler will automatically insert multiplexers into the data flow
in order to ensure that the component receives the correct command.

5.3 Robot behavior guarantees

The controller generated for the robot is correct-by-construction, which means
that provided the assumptions made by the user hold during controller execution and
the user chose an appropriate grounding scheme, the robot will behave as expected.

6 Case studies

6.1 Pick-and-place grasper

A sample robot made using this system is a robotic grasper. In this case a user
desires a robot which, when prompted by the user, moves to a starting location and
waits for an object; when an object is detected, it grasps it, moves to a target lo-
cation, and notifies the user. This behavior can be written in a Structured English
description as shown in Figure 2, and the generated finite state machine can be ex-
amined via simulation as shown previously in Figure 3. There are a variety of ways
in which this can be grounded to generate a structural description, and a few such
possibilities along with the one chosen here are depicted in Figure 5; custom propo-
sitions represent internal state that do not become grounded in robot components.
During the process of choosing robot components from the library, various parame-
ters such as arm length or gripper size can be set by the user according to their task’s
environment and restrictions.

Once the grounding is complete, the robot compiler generates a fold pattern along
with electrical instructions and Arduino code. The resulting robot is shown in Fig-
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ure 6. After uploading the generated code, the arm demonstrates the desired behav-
ior. When the user claps, the robot moves to the source location and waits for an
object. It grasps the object upon detection, moves to the target location, releases
the object, and indicates completion using a buzzer. Various metrics regarding the
robot’s performance as well as its design process are summarized in Table 1.

Specification 1 Linear Temporal Logic Specification for Example 1
¬πwaitingForOb ject∧
�((©πuserSummons d ∧¬πpickU pOb ject m)→©πwaitingForOb ject)∧
�(πpickU pOb ject m→¬©πwaitingForOb ject)∧
�((πwaitingForOb ject ∧¬πpickU pOb ject m)→©πwaitingForOb ject)∧
�((¬πwaitingForOb ject ∧¬©πuserSummons d)→¬©πwaitingForOb ject)∧
�(πwaitingForOb ject ↔©πmoveToSource m)∧
�((πseeOb ject d ∧πmoveToSource m)↔©πpickU pOb ject m)∧
�((¬πpickU pOb ject m∧¬πmoveToSource m)↔©πindicateComplete ud)

Fig. 6: A pick-and-place
robotic grasper was designed
using the presented system,
starting with a desired
behavior and ending with
an inexpensive, rapidly
manufactured, functional
prototype.

Table 1: Performance of robotic grasper
Metric Result

Approximate design time 30 min
Approximate fabrication time 30 min
Approximate cost 25 USD
Mass 49.4 g
Maximum actuated joint angle ±35 deg
Gripper strength (on 1.5 cm object) 100 mN
Maximum gripper opening 110 mm

6.2 Fetch robot

A second example robot is a mobile robot with an attached manipulator for re-
trieving an object placed along a path. The desired behavior is to follow a path until
the object is reached, secure the object, continue following the path until the goal is
reached, release the object, and indicate completion. This behavior can be written
using the Structured English of LTLMoP as shown in Figure 7.
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Fig. 7: The desired behav-
ior of a path-following object
fetcher can be defined using
Structured English. The high-
lighted statements are neces-
sary to enforce a mutual ex-
clusion condition on propo-
sitions grounded to the same
physical component, and are
automatically generated and
added to the behavioral spec-
ification.

Fig. 8: Two different robots made with the system which both achieve the desired task of following
a path to retrieve an object.

(a) This robot is a line follower and de-
tects the object using a distance sensor.

(b) This robot is a wall follower and detects the ob-
ject using a touch sensor.

Fig. 9: The mapping process alerts the user when multiple propositions are mapped to the same
component. In this case, the propositions releaseObject md and secureObject md have
been mapped to the same component port.

To demonstrate the versatility and potential for rapid prototyping, two different
sets of groundings were implemented. The chosen components are enumerated in
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Table 2, and the completed robots can be seen in Figure 8. Some metrics regarding
the performance as well as design of these robots are summarized in Table 3. In both
cases there are two propositions, releaseObject md and secureObject md, that
are both mapped to the same port of the same component (Gripper or Forklift
depending on the robot). In addition, the line follower instantiation maps both
leftForward md and indicateComplete md to the same wheel servo in order to
indicate completion with a “victory dance” behavior, spinning in a circle. LTLMoP
detects these potential conflicts and notifies the user while automatically generat-
ing additional statements necessary to enforce a mutual exclusion on the relevant
propositions. A sample notification is shown in Figure 9. The generated statements
are then automatically appended to the functional specification as shown in Figure 7.

Table 2: Two separate sets of groundings implemented for a path following fetch robot.
Functional Proposition Line Follower Wall Follower
Move forward and left Wheel 1 Wheel 1
Move forward and right Wheel 2 Wheel 2
Detect path Line detector Distance sensor
Detect object Touch sensor Light sensor
Detect goal UI toggle switch 1 Microphone
Secure object, release object Gripper Forklift
Indicate object secured UI toggle switch 2 LED
Indicate complete Wheel 1 Buzzer

Table 3: Performance of path following fetch robots
Metric Result

Line Follower Wall Follower
Approximate design time 30 5 min
Approximate fabrication time 60 45 min
Approximate cost 30 45 USD
Mass 64.1 72.1 g
Speed 11.1 11.0 cm/sec
Maximum gripper opening 45 N/A mm

Once programmed with the generated code, both robot configurations performed
the desired task. In addition, the generated code included calibration routines for the
sensors when the robot first begins; it prompts the user to provide the minimum and
maximum values for each sensor in turn and thereby determines a suitable thresh-
old value for each sensor for converting the analog readings to boolean variables
expected by the state machine. For example, the line follower will be placed over
white and then over black, and the wall follower will be placed near the wall and
then far from the wall. This also grants the user some runtime control over the robot
behavior; for example, they can adjust how close the robot stays to the wall by ad-
justing the positions provided during calibration. Note that the line following robot
design also includes UI elements; in this case, the user can use the provided Android
app, which will automatically communicates with the generated robot via Bluetooth
and display the appropriate user interface (in this case, two toggle switches).
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7 Conclusion

In this paper, we present an approach to building and controlling a custom on-
demand printable robot from a Structured English functional description, with an
end-to-end integrated system implementing the above. This addresses a number of
problems often faced by robot designers. Previously, despite the synthesis of a ver-
ified robot controller from a task specification, a mission may fail if existing robots
are not suitable for the task. On the other hand, constructing custom robots to ac-
complish a desired behavior requires experience, expertise, tools, and resources.

The work presented here now allows users to start with a vision and follow
system-generated recommendations to create a robot to execute that task. The user
need not be experienced with robot creation or engineering principles, thus allow-
ing even casual users access to these custom robots; advanced creaters still benefit
from design automation. The correct-by-construction controller extends guarantees
to the created robot, ensuring a successful mission provided that certain constraints
are met. These guarantees coupled with online simulation simplify the design-build-
test iteration loop and could easily allow for sophisticated design requirements such
as building safety constraints into the robot. With the system demonstrated herein,
functional and structural specifications can be matched to each other, allowing for
the creation of on-demand robotic solutions for physical tasks.

This paper inspires a number of further research avenues addressing relaxing and
avoiding such constraints, while expanding the autonomy provided by the compiler
system. The system can be extended to integrate analog signals in a more automated
manner for a richer behavioral design space. In addition, more complex functional-
ity can be implemented by enabling a many-to-many mapping between propositions
and components; though the compiler supports such a topology, determining mutual
exclusion conditions is necessary to ensure provably correct constructions. Finally, a
natural language input parser can allow greater flexibility in task specifications, po-
tentially allowing more fine-grained recommendations of components for grounding
through an analysis of the circumstances in which the proposition appears.

Supplementary material A video demonstrating the system presented in this paper
can be found at http://web.mit.edu/mehtank/www/isrr2015/.
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