
Integrated Codesign of Printable Robots

Ankur Mehta

Postdoctoral Associate

Email: mehtank@csail.mit.edu

Joseph DelPreto

Graduate Student

Email: delpreto@csail.mit.edu

Daniela Rus

Professor

Email: rus@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

This work presents a system by which users can easily create
printable origami-inspired robots from high level structural
specifications. Starting from a library of basic mechanical,
electrical, and software building blocks, users can hierar-
chically assemble integrated electromechanical components
and programmed mechanisms. The system compiles those
designs to cogenerate complete fabricable outputs: mechani-
cal drawings suitable for direct manufacture, wiring instruc-
tions for electronic devices, and firmware and user interface
software to control the final robot autonomously or from hu-
man input. This process allows everyday users to create on-
demand custom printable robots for personal use, without
the requisite engineering background, design tools, and cy-
cle time typical of the process today. This paper describes the
system and its use, demonstrating its abilities and versatility
through the design of several disparate robots.

1 Introduction
Robotic devices have gained widespread traction

within research and industrial environments, yet they
are still comparably underrepresented in personal ev-
eryday life. Creating a new robotic system typically re-
quires domain-specific expertise across a range of dis-
ciplines, including mechanics for the structural body,
electronics to connect sensors and actuators, and soft-
ware to specify behaviors. This presents a knowledge
barrier for on-demand robot creation, which is further
compounded by the need for a variety of computer-
aided design tools for implementation. This entire
process often involves repeated design iterations, and
must be rerun for each new robot desired, keeping the
design and fabrication of new robots beyond the realm
of casual users.

Computational tools that can create robots from

high-level descriptions would allow the general public
to obtain custom devices able to accomplish specified
functions on-demand, The long-term objective is to de-
velop a hardware compiler that can automatically de-
sign and fabricate a robot to accomplish desired goals
from a functional specifications of the required tasks.
This paper takes a step towards that vision with a sys-
tem that allows non-experts to simultaneously gener-
ate mechanical, electrical, and software designs from a
custom structural specification, and then quickly and
inexpensively fabricate the designed robot.

The system presented here begins with a database
of mechanical, electrical, and software components, en-
capsulated in a common abstraction suitable for mod-
ular composition. Expert users can directly generate
new low level building blocks, while both expert and
casual users can make custom electromechanical de-
vices by hierarchically connecting existing blocks. The
component abstraction allows for parametrization in
terms of geometric and physical properties to allow
further fine-grained customizability.

Component hierarchies are compiled by the system
into a collection of files necessary for a user to manu-
facture the specified design: the mechanical structure is
made using 2D or 3D rapid fabrication processes from
generated fabrication drawings, the user assembles the
electrical subsystem onto that structure guided by a bill
of materials and wiring instructions, and firmware gets
loaded onto the central microcontroller. The result-
ing robot can be wirelessly controlled from a generated
user interface (UI), autonomously controlled from gen-
erated application software, or user programmed with
custom behaviors with help from a generated control
library.

Fig. 1. Complete mechanical, electrical, and software subsystem

designs for an autonomous line-following wheeled robot are gener-

ated from a functional description of the logical flow of information

from a light sensor to the wheels.

This work extends the previous work reported in
[1–3] by unifying and integrating mechanical, electri-
cal, and software subsystem designs under a common
functional specification based on information flow. In
particular, this paper presents a modular, hierarchical,
component based abstraction for integrated electrome-
chanical robot design specification, composed of the
following:

1. a scripted code object which encapsulates me-
chanical, electrical, and software designs into self-
contained parameterizable components,

2. a process to hierarchically compose such elements
along well-defined interfaces into electromechani-
cal mechanisms of arbitrary complexity,

3. methods to render the component design as di-
rectly manufacturable fabrication specifications,

4. a library of base and derived components, and
5. several robots designed, fabricated, and operated

using the proposed system.

2 Related Work
This paper joins a body of work including rapid

fabrication technologies, modular design methods, and
robotic system specification.

There has been much work to enable the rapid fab-
rication of arbitrary geometries. On-demand 3D struc-
tures are generally achievable by additive manufac-
turing using 3D printers; advances in printer technol-
ogy have made desktop printers available to the gen-
eral public. However, while complex solid geome-
tries are easily manufactured with 3D printing, achiev-
ing the required compliance and mobility necessary
for general robotic systems is nevertheless difficult to
achieve using most common techniques [4]. Limited
workarounds do exist [5,6]; these often lack robustness
or reliability, though current technology has been im-
proving. 3D printers are also plagued by long fabri-
cation times – though quicker than conventional man-

ufacturing processes, parts still take on the order of
hours to build.

Mechanical structures can alternatively be real-
ized by patterning then folding 2D sheets to define
the shell of the desired geometry. A variety of sub-
strates are possible, including cardboard laminates [7],
single layer plastic film [8], or more exotic materi-
als [9, 10]. These designs can be manually folded by
hand, folded by embedded or external active stimuli,
or passively folded by controlled environmental con-
ditions [11, 12]. These processes have been used to cre-
ate passive 3D structures [11, 13] as well as active pro-
grammable robots [9, 14, 15]. The system presented in
this paper employs this fabrication process.

The 2D fabrication methods have been employed
for rapid prototyping, being able to manufacture de-
vices in a time frame of minutes. However, creating
the fabrication drawings for these processes typically
requires careful hand design by experienced engineers
using sophisticated 2D CAD programs, and were dif-
ficult to visualize as 3D objects. Custom electronic cir-
cuitry and software was required to drive the actua-
tors. The robots were created as monolithic integrated
designs, and so these issues would compound as de-
signs grow in size and complexity. There have been
attempts to automate the decomposition of 3D shapes,
notably in [16–18], to generate 2D fold patterns. These
tools and algorithms, however, focus mostly on solid
objects, employing various heuristics to generate poly-
hedra obeying certain rules. Compliant and kinematic
structures are not addressed.

The use of modular methods can greatly simplify,
clarify, and speed up system design [19], and has been
widely adopted throughout the software development
communities. Modular design can also be applied to
robot creation [20–22] to achieve the same benefits over
ad-hoc custom design, to the point of inspiring com-
mercial offerings, e.g. [23–25]. However, these all call
upon the use of a discrete set of specially designed
modular building blocks, adding expense with lim-
ited configuration space. This work adapts such a de-
sign method to use discrete but off-the-shelf electron-
ics along with the 2D cut-and-fold fabrication process
above, enabling a much broader range of customizabil-
ity from cheaper raw materials.

Finally, while physical systems are often designed
in an interactive graphical environment, there has been
work on creating domain specific programming lan-
guages to specify hardware designs using software
for electrical circuits [26] and rigid bodies [27]. This
software-defined-hardware paradigm has been used to
define robotic designs for simulations using a scripted
modular language in [21, 28]; the system presented in
this paper employs a similar design method for user in-
put, but the focuses on physical device creation, com-
piling into directly fabricable outputs.

3 Design Paradigm

Traditionally, robots are created over a sequence of
phases during which mechanical, electrical, and soft-
ware subsystems are designed and then integrated. Be-
cause of the deep interplay between the separate sub-
systems, the entire process must be largely recreated
for each distinct robot. If personal robotics is to gain
widespread traction, however, the process by which
devices are designed must be greatly simplified. Fur-
thermore, with school children or the general public as
target audiences, the system must be usable by those
without engineering backgrounds. The system pre-
sented in this work therefore follows a number of guid-
ing principles to help translate users’ visions into me-
chanical structures as easily and directly as possible.

The presented system leverages a modular
paradigm that allows electrical, mechanical, and
software components to be coupled at the lowest
level by experts, and then abstracted into functionally
defined blocks usable by novices. As a user combines
these electromechanical modules, subsystem designs
are assembled behind the scenes to maintain an inte-
grated design throughout the modular composition.
Complexity is managed by nesting hierarchical con-
structions in an intuitive design abstraction, allowing
an inexperienced user to easily understand and utilize
the design process. Ultimately, this high-level assem-
bly of modules can be directly compiled to generate
fabrication specifications to manufacture the robot.

This paradigm allows a high degree of modular
reuse, allowing for incremental adaptation from earlier
designs. Furthermore, the generated designs take the
form of text-based code scripts, and are therefore easy
to share, modify, adapt, and extend using free and open
source tools, unencumbered by proprietary standards.

3.1 Modular encapsulation

The fundamental unit of abstraction in this de-
sign system is the component object. This represents
an individual design element that can accomplish a
self-contained set of functionality, and provides the
required encapsulation to define and create that de-
vice. The simplest components are the basic building
blocks of electromechanical structures, such as a me-
chanical beam, discrete servomotor, or code method.
Complex components can be hierarchically built by
combining existing components as described below in
Sec. 3.3. These higher order components can represent
anything from mechanical assemblies and control sys-
tems to integrated electromechanical mechanisms and
full robots.

Components can be parameterized, allowing for
fine-tuned design customization. These parameters
define adjustable values that quantitatively but not
qualitatively change the functionality of design ele-
ments. Examples of parameters include geometric di-
mensions, electronic device models, or feedback loop

gains. They therefore provide a means by which casual
users can customize a component’s behavior without
changing its overall function. Assigning values to all
parameters of a component serves to fully specify that
element, and is sufficient to generate fabricable design
files to manufacture that object.

3.2 Information flow
In order to make the behavior of a design readily

apparent, the design process focuses on describing the
flow and manipulation of information among the var-
ious components. Each component is an encapsulated
module that can be conceptually replaced by a parame-
terized “black box” mapping a set of inputs to outputs.
These ports conceptually transmit information related
to the behavior defined by that component. Ports can
take on a number of different types, depending on the
nature of the information transmitted therein. Mechan-
ical ports transmit information in the form of spatial
position and orientation, and a connection along me-
chanical ports is realized by a physical attachment of
mechanical patches. Electrical ports transmit electrical
signals, and their connections are realized by wires or
other communication channels. Data ports represent
the flow of conceptual information such as software
values, and are realized by code functions or variables.

Components can provide ports of multiple types,
and in fact this forms the basis for cogenerating
robotic subsystems across a design. For example, elec-
tromechanical transducers such as sensors and actua-
tors translate between electrical and mechanical ports,
while hardware drivers translate between data and
electrical ports. Controls in a User Interface (UI) can
be seen as data information sources, while end effec-
tors provide mechanical information sinks. Each com-
ponent is defined by the specific mapping between the
information at its inputs to the information at its out-
puts, and this mapping is often a function of the com-
ponent’s parameters.

Several ports can be collected into a single inter-
face, allowing a logical grouping of functionally related
ports to be connected simultaneously. For example, a
plug can provide both electrical and mechanical con-
nectivity, or a communications transceiver can bundle
several data ports into a single channel.

3.3 Hierarchical composition
Each design made in this system is itself a compo-

nent. A design library is initially populated with ba-
sic building blocks designed by experts to provide a
core set of functionality from manually defined speci-
fications. From there, the general design environment
allows users to create new components by attaching ex-
isting components from the library along their exposed
interfaces. A newly created component is then defined
by its collection of sub-components and how their in-
terfaces are connected, as diagrammed in Fig. 2.

Fig. 2. When creating a new electromechanical component, a de-

signer needs only to be responsible for specifying the blocks high-

lighted in orange: which subcomponents are required from the li-

brary, how their parameters and interfaces are constrained, and what

parameters and connections to expose to higher designs.

The new super-component is also parameterized;
all sub-component parameters are then either man-
ually specified or defined as functions of the super-
component’s parameters. Similarly, the new super-
component can expose interfaces inherited from the
sub-components for future connections. In this way,
newly designed components get added to the library
and can be used in higher order designs.

As components from the library get connected
along their interfaces, an information path is traced
from a set of inputs, through various transformations,
to a set of outputs. The overall input/output relation-
ship defines the functionality of the designed mecha-
nism, while the specific path defines its implementa-
tion.

4 Scripted hardware design
The design system described in the above sections

was implemented as a Python package, with the de-
signs themselves defined and generated by Python
scripts. This purely software-defined-hardware
paradigm allows for general cross-platform compati-
bility, and inherits many of the benefits inherent in soft-
ware development.

4.1 Component object
The component object is a Python class that imple-

ments the functionality described in the previous sec-
tion. Every component contains a list of its parame-
ters and interfaces; a derived component additionally
contains references to its constituent subcomponents
with functions constraining their parameters, as well
as a list of connections defining which pairs of sub-
component interfaces are connected. Each component
includes a collection of executable script objects that,
when run, generate fabricable designs to implement its
specified input / output functionality. For basic build-

ing blocks, these code elements must be manually writ-
ten in Python by an expert designer. In a derived com-
position, however, these scripts are autogenerated by
composing the respective elements of its subcompo-
nents.

Component objects, when written directly by ex-
perts, also represent a hierarchy through a structure of
class inheritance. Any component may serve as the
superclass for a more specialized component, allow-
ing for new definitions to inherit rules, ports, types,
and design principles from previously designed com-
ponents. This makes it easier for experts to design
new components since most of the tedious details have
already been dealt with by pre-existing, higher level
components.

4.2 Composable script elements
The composable script elements form the software

that defines the hardware specified by the compo-
nents, with the hardware comprising various mechan-
ical, electrical, and software subsystems of the com-
plete electromechanical device. Not all components
will have all subsystems, but a derived component will
contain scripts for every subsystem contained in the
components comprising its hierarchy. These scripts are
described in more detail in Sec. 5.

Executing the script in a Python interpreter gen-
erates output files that specify the creation of the re-
spective subsystem. Mechanical output files include a
2D vector drawing that can be directly sent to a laser
or vinyl cutter to create a cut-and-fold structure, and
a solid object file that can be built using a 3D printer.
Electrical subsystem output files include a bill of ma-
terials and wiring instructions to assemble the desired
circuit. Software subsystems can include a set of pro-
gram files to be loaded onto the central microcontroller,
off-board UI apps for human control of the robot, and
code libraries that simplify the creation of custom-
written control programs.

4.3 Component ports
The interfaces of a component can contain a num-

ber of ports which represent pathways by which infor-
mation is passed to and from other components in a
hierarchical design. Like components themselves, pa-
rameters can be used to quantitatively customize ports
during design and implementation. The Python class
defining a port specifies its type, describing what kind
of information it passes and in which direction. When
instantiating a connection between interfaces of two
components, ports can ensure that they are connected
to ports of appropriate reciprocal types, allowing in-
formation to logically flow from one component into
the other. When establishing such a connection, the
component class delegates to each port the task of com-
bining the attached composable script elements in each
subcomponent into a single set of scripts that generate

integrated designs for the composite device.

When connecting two components together, port
requirements can be used to automatically determine
appropriate interfaces to join. For example, when con-
necting an analog sensor to a microcontroller, the sen-
sor’s electrical output port must connect to an electrical
input port that supports analog readings, and so the re-
spective interfaces will be automatically selected. Sim-
ilarly, the data, electrical, and mechanical subsystems
will automatically be joined as appropriate. Additional
rules for port matching can be programmed to provide
more sophisticated design guidance and automation,
and can be used to provide compiler-level verification
of design decisions.

To achieve these rules for automatic connections
and design principles, the port classes form a structure
of class inheritance similar to that described above for
the components. At the most general level, the Port
class allows for the specification of port types to which
it should connect and port types to which it cannot
connect, as well as basic rules for the verification and
determination of connections. New types of ports de-
fined by experts then inherit from existing port types,
and can extend their lists of recommended or forbid-
den types as well as their rules for verifying and forg-
ing connections. For example, a general class for an
output port may simply specify that it cannot connect
to another output port and recommend connecting to
an input port. A slightly more specialized port type
such as a PWM output can inherit from the general out-
put type and add that a PWM input is a recommended
type. The rule for not connecting to other outputs is al-
ready specified (and will apply to any port types that
inherit from the general output type). Moreover, the
system can automatically determine that the PWM in-
put inherits from the more general input type, and thus
the new rule will be applied first when searching for
ports with which to make new connections. In this
way, rules for verification and determining connections
can quickly become quite sophisticated with little addi-
tional effort on the part of the experts.

4.4 Software infrastructure

The Python software package that implements the
integrated co-design environment is divide into three
main collections: 1) the classes that define the underly-
ing code architecture of the software-defined-hardware
and contain the algorithms used to compose and in-
stantiate designs are collected into an API; 2) that API
is used by expert designers to come up with a set of ba-
sic components to populate a library; and 3) a collection
of utilities and builder applications to aid a casual user
to assemble library components into higher order elec-
tromechanical designs (which can then also be added
to the library).

The library is a folder that stores all components
created in this environment; a small subset of the com-

Component Library

Face*

Beam*

Cutout*

Block*

Hinge*

FlexHinge*

Extension*

FourBar*

Tab/Slot*

Spoke

Tendon

Leg

Finger

HeaderMount

Wheel

Gripper

Arduino*

ServoMotor*

LED*

PhotoSensor*

Switch*

EModule*

Firmware*

UI Element*

Brain

Motor

Arm

ActuatedGripper

ActuatedHinge

Component Type

Mechanical

Electrical

Software

Integrated

* base unit

Fig. 3. A library of modular components enables robotic design to

be reduced to hierarchical composition of pre-designed elements.

The starred components are basic building blocks defined from

scripts by experts; the rest have been assembled within the design

system and added to the library.

ponents currently defined in the library are displayed
in Fig. 3. An expert-designed basic component takes
the form of a Python script in which all the component
script elements are manually specified, and is saved in
this folder. Derived components, on the other hand,
are specified only in terms of its subcomponent break-
down, and so do not need to be written as a Python
script. Instead, the design can be stored in plain text
using the YAML markup language [29]. A user can
write the YAML by hand, or use a number of utilities to
generate the YAML in a more interactive manner. Cur-
rently both a text-based console interface and a simple
graphical interface exist to allow non-expert users to
build robotic designs by intuitively assembling build-
ing blocks; a web interface is currently under devel-
opment. Of course, derived components can also be
created with a python script, giving greater configura-
bility to an expert user.

5 Subsystem implementation
5.1 Mechanical system

Mechanical building blocks are used to define the
physical structure and degrees of freedom of the robot
body. These components also present input/output
ports, defining the physical positions and orientations
of a subset of the mechanical design, often a face or
an edge, which can interface with other components
or the environment. To maintain universality, designs
are generated and stored in a process-independent data
structure; process-specific plugins can then be used on
those designs to generate fabrication-ready outputs.

5.1.1 Implementation encapsulation
Mechanical geometries are stored using a face-

edge graph that can be resolved to both 2D and 3D
shapes as required by specific fabrication processes.
A basic example of this is shown in by the beam in

Fig. 4, generated from the code in listing 1. The blue
squares in the graph represent the rectangular faces of
the beam, connected to each other along folded edges
represented by red circles. The unconnected dashed
lines represent connections along which future com-
ponents can be attached. A cut-and-fold pattern can
be generated from the face graph, requiring the dotted
edge to be replaced by a tab-and-slot connector. A 3D
solid model can also be generated to display the struc-
ture resulting from folding the 2D pattern, or to directly
generate a 3D object via 3D printing.

1 import library

2 b = library.getComponent("Beam")

3 b.setParameter("length", 100)

4 b.setParameter("beamwidth", 10)

5 b.setParameter("shape", 3)

6 b.makeOutput()

Listing 1. Python script defining a mechanical beam

5.1.2 Mechanical ports

The ports of a mechanical structure describe lo-
cations along which additional mechanical elements
can be physically attached; the information that flows
through them is the spatial configuration of that patch.
For rigid elements, the information that is assigned to
the output port is an affine transform applied to the lo-
cation to the input. For example, the beam described in
the previous section can have one input and one out-
put port, defined to be the two ends of the beam. The
value of the output port is a location set to be that of
the input port, offset by a distance equal to the length
of the beam.

Mechanical components can also include degrees
of freedom; in that case setting an input value can re-
sult in a non-rigid deformation of the mechanical de-
vice. This is useful in generating motion for robotic
mechanisms.

5.1.3 Composition

Mechanical components can be connected along
mechanical ports to generate more complex geome-
tries. Depending on the nature of these connections,
additional mechanical ports may be opened up in a
composition if the resulting geometry has additional
unconstrained degrees of freedom. A simple compos-
ite structure is demonstrated in Fig. 5 from the YAML
definition in listing 2. In contrast to the primitive Beam
component described above, this new design is entirely
defined by its subcomponent structure, and does not
need to be designed in Python. The subcomponent
ports are edges, connected by a flexible joint for compli-
ant motion. This hinge defines an additional mechani-
cal port for the angle of the flexure.

1 # Set parameters of new Component

2 parameters : {width , ful lLength , jo in tAngle}
3
4 # Define subcomponents and

5 # constrain subcomponent parameters

6 subcomponents:
7 beam1:
8 object : Beam
9 parameters :

10 angle : 45
11 beamwidth: {parameter: width}
12 length :
13 parameter : fu l lLength
14 function : x * . 4
15 shape: 3
16 beam2:
17 object : Beam
18 parameters :
19 angle : 45
20 beamwidth: {parameter: width}
21 length :
22 parameter : fu l lLength
23 function : x * . 6
24 shape: 3
25
26 # Connect subcomponents along interfaces

27 connections :
28 − - [beam1 , botedge]
29 - [beam2 , topedge]
30 - {angle : {parameter: jo intAngle , funct ion : ’x’}}
31
32 # Expose interfaces inherited from subcomponents

33 i n t e r f a c e s :
34 botedge: { i n t e r f a c e : botedge , subcomponent: beam2}
35 botface : { i n t e r f a c e : bot face , subcomponent: beam2}
36 topedge: { i n t e r f a c e : topedge , subcomponent: beam1}
37 topface : { i n t e r f a c e : topface , subcomponent: beam1}

Listing 2. YAML specification of the hierarchical design of a finger

consisting of two beams with a kinematic degree of freedom

5.2 Electrical system

Within the hierarchical composition of elements,
the electrical subsystem is determined by the topol-
ogy of the electrical devices and connections. Each de-
vice added to the design may contain electrical ports,
and connections between these ports represent phys-
ical connections that describe how electrical informa-
tion flows throughout the design. A library of basic
components has been developed which addresses the
typical electrical needs of a robotic system, namely var-
ious forms of sensing, actuation, processing, communi-
cation, and user interfacing. Yet this subsystem is not
designed in isolation, since many electromechanical
devices required to accomplish physical tasks are often
distributed throughout the robot. Hardware modules
have been developed to facilitate this codesign and al-
low the electrical layout to mirror the mechanical struc-
ture. Additionally, components may directly serve as
interfaces between various subsystems by containing
ports of many different types in addition to electrical.

The library has been populated with discrete elec-
tronic components that have standardized header con-
nectors, allowing for simple plug-in connections be-
tween devices. This eliminates the requirement for cus-
tom printed circuit boards (PCBs) to handle electrical
interconnects. However, the system does not preclude
such design elements – the extensible nature of the
component abstraction can allow an expert designer

(a) Face-edge graph representation of a beam geometry (b) Generated drawing to be sent
to a 2D cutter

(c) Generated 3D solid
model

Fig. 4. Outputs generated from the code in listing 1

(a) Component-connection graph repre-
sentation of a finger design hierarchy

(b) Generated drawing to be sent to
a 2D cutter

(c) Generated 3D solid model

Fig. 5. Outputs generated from the YAML definition in listing 2

to implement a PCB composable to enable more com-
plex electrical devices and circuits, at the expense of
in-home fabricability for a casual user.

5.2.1 Information Flow

As in the mechanical layout, the sources and sinks
of electrical information can reveal the underlying
structure of the design. In the case of electrical sig-
nals, units such as sensors or communication modules
can source electrical information, and devices such as
servos or LEDs can sink electrical information. Note
that the overall information flow does not necessarily
start or stop at these devices, but the electrical informa-
tion does – for example, a communication module may
take in a conceptual value and convert it to electrical
information, and the servo takes in electrical informa-
tion and converts it to mechanical information. These
devices may therefore serve as electrical sources while
being sinks for other types of information, and vice
versa. By only considering the electrical sources and
sinks though, the electrical sub-design can be made ap-
parent.

Less informative ports such as power connections,
and details such as particular pins used, are abstracted
away from the user during the design process. At fab-
rication time, the system automatically creates power
connections, chooses particular pins and pin types, and
inserts devices such as microcontrollers or power con-
verters if necessary so that only the informational flow
needs to be considered during design.

5.2.2 Electrical Hardware Modules

The modularity and scalability of the electrical sys-
tem is enhanced by plug-and-play hardware modules
that serve as interfaces between electrical devices and
the main controller. Each module uses an ATtiny85
microcontroller to drive three general ports, as shown
in Fig. 6, which can be independently configured as

digital outputs, PWM outputs, digital inputs, or ana-
log inputs. Since these modules are designed to be
plug-and-play, however, the code loaded on the mod-
ules does not change according to the robot design; on
startup, the main controller sends the modules any nec-
essary design-specific data such as what pin types to
use. Communication is established between a mod-
ule and the main controller via a one-wire serial pro-
tocol, and messages are then exchanged such that de-
vices can be attached to the modules as if they were be-
ing attached to the main controller. Modules can also
be chained together, in which case messages are passed
along the chain until they reach the desired module. In
this way, the number of possible devices is no longer
limited by the number of pins on the main controller.
This configuration also facilitates the physical distri-
bution of devices across the robot while reducing the
wiring complexity, thus allowing the electrical layout
to more naturally mirror the mechanical layout. The
flexible nature of the hardware modules can also be
leveraged during automatic design since the system
can insert them where needed in order to join various
devices together.

5.3 Software System
In general, electrical systems on a robot are con-

trolled by processors such as microcontrollers, and thus
the design of an electrical subsystem must directly in-
teract with the design of a software subsystem. This
subsystem includes driver firmware for controlling de-
vices, higher level microcontroller code, UI generation,
and the ability to automatically generate code for robot
behaviors. Within this abstract subsystem, components
may pass information such as a desired servo angle or
a UI slider position as conceptual data values. Com-
ponents contain software snippets written by experts
which represent the code needed for the block to per-
form its required function, and can contain code tags
that reference design-specific information. At fabrica-

Fig. 6. Each electrical module features connections for an upstream

and downstream module as well as three ports for connecting de-

vices such as servos, LEDs, or digital and analog sensors. These

modules are designed to be plug-and-play and do not require repro-

gramming based upon location or connected devices.

tion time, the data network can be analyzed and all of
the software snippets can be pooled together to gen-
erate software which reflects the designed data flow.
The collection of provided components allows users
to design at an abstraction level with which they are
comfortable; expert users can use low-level code di-
rectly, intermediate users can use automatically gener-
ated code libraries to aid the writing of custom code,
and novice users can intuitively link ports to specify
behaviors and generate a graphical UI.

5.3.1 Hardware Drivers

At the lowest level, code must be generated which
allows the main controllers to directly interact with
the electrical devices. Towards this end, components
called drivers perform conversions between software,
abstract data, and electrical signals; for example, a
servo driver accepts as input a conceptual data value
such as an angle, and outputs a software snippet rep-
resenting the knowledge of how to realize that value
as an electrical signal. This output can also adapt to
the design topology through the use of parameters.
Drivers are therefore sources for the software subsys-
tem and sinks for abstract data – they serve as indirect
interfaces between the conceptual software realm and
the physical electrical realm. Such examples illustrate
that the designed sub-systems are not isolated from
each other, but rather interact both through the types
of information they process as well as through design
parameters that affect how the information processing
takes place.

5.3.2 User Interface Elements

While hardware drivers are necessary abstraction
barriers between the software and electrical realms,
they are often included at a low level of the design hi-
erarchy and not made transparent to the novice user.
Other data sources such as UI elements, however, can
be intuitively included in higher level designs and al-
low for humans to become information sources. In this

case, elements can represent UI elements such as joy-
sticks, buttons, switches, or sliders. These then gen-
erate conceptual data values that can be processed by
other software blocks and ultimately control actuators
or otherwise affect the robot’s behavior. In this way,
the user interface can be designed in parallel with the
robot itself, such that the design process for the robot
subsystems can interact with the design process for its
human interface.

5.3.3 Data Manipulation

Although drivers and UI elements serve as concep-
tual sources by translating data or human interaction
into software and thereby allow for the direct control
of various devices, a robot should also be able to per-
form some autonomous behavior. An intuitive way to
design such behavior is to link data sources and sinks
together – for example, linking a light sensor output to
a servo angle input through some simple function can
create a line following robot. To facilitate such informa-
tion flow, various library components can manipulate
data within the conceptual realm. For example, such
a block may take in data from a sensor and scale it to
a value that is meaningful to a servo driver. By serv-
ing as an interface between sensors and actuators, this
conversion enables autonomous behavior to be easily
described in the design environment. Similarly, data
may be converted from a human-readable version to a
machine-readable version, facilitating human interac-
tion with the final design. Thus the flow of conceptual
data within the design largely describes the resulting
behavior of the robot.

5.3.4 Programming Blocks

While the data manipulation components allow for
the direct linking of devices throughout the design and
the seamless integration of the conceptual and physical
realms of the design, more advanced users may want to
specify robot behaviors in a more arbitrary manner. Li-
brary components are therefore provided which allow
for graphically writing arbitrary code. These blocks in-
clude if/else statements, loops, and the declaration and
definition of variables or methods. Using these blocks,
arbitrary code can be created to specify robot behav-
ior. Such blocks also include data ports which allow
the software to directly utilize the information flow of
the design; for example, the block to set a variable may
be connected to the output of a sensor. Details of how
the data signals are converted into software (such as
how the sensor is read) can be encapsulated lower in
the hierarchy and thus abstracted away from the user.

5.3.5 Software Sinks

The various elements described above translate
conceptual data into software to realize the abstract
flow of data defined by the design. Ultimately, these

software outputs must be processed and pooled to-
gether into a coherent library for a particular device.
Towards this end, a microcontroller such as an Arduino
may be a sink for the drivers software, or an Android
device may be a sink for the User Interface software.

The software snippets written by experts and in-
cluded in the components can include various code
tags that are processed once the design is complete.
These may include pin numbers, device indices, counts
of other devices in the design, device types, or other
design parameters. These allow experts to write code
snippets that are flexible and dependent upon the final
design topology. In addition, they may write multiple
code snippets and provide rules for choosing between
them based upon design parameters – this allows the
software sources to adjust their generated software ac-
cording to the type of sink to which they are ultimately
connected.

Once the flow of software is well defined, the sinks
can pool the code from all of the connected inputs into
usable code. This includes processing the aforemen-
tioned code tags so that the code reflects the final de-
sign. This may also include generating code for inter-
facing with the hardware modules, if any are present,
by abstracting away the implementation details from
users of the final code library. When the system ana-
lyzes the overall topology, it assigns each device a “vir-
tual pin number,” as shown in figure 7, and this list
of virtual pins is presented to the user along with the
building instructions. If the user then opens a gener-
ated Arduino file, for example, they can interface with
the attached devices by simply using the virtual pin
numbers – if a sensor was assigned a virtual pin num-
ber of 3, a user can simply call robot.analogRead(3) as
if it was connected directly to the brain. The generated
robot library will determine the corresponding mod-
ule and physical pin, and send the command along the
appropriate chain. The user can therefore program as
they normally would program an Arduino, and all of
the work for interfacing with the actual electronic lay-
out is done behind the scenes.

5.4 Integrated components

Because of the common API used by each compo-
nent, design elements can be integrated across subsys-
tems. A typical combination connects the electrical out-
put of a software driver block to the input of an elec-
tromechanical transducer to give a logical actuator ele-
ment driven by data signals. Higher levels of integra-
tion can further connect that block’s data input to a UI
data source and mechanical output to a structural de-
gree of freedom to yield a component representing self-
contained robotic mechanism. Such integrated compo-
nents autonomously cogenerate mechanical structures,
electronic wiring diagrams, microcontroller firmware,
and user interfaces as shown in Fig. 8.

Fig. 7. Each device is automatically assigned a virtual pin number.

Users can then control the robot using the virtual pin numbers, so

that knowledge of the actual chain configuration is not required.

Fig. 8. An intuitive connection of integrated components simulta-

neously produces a collection of outputs for immediate fabrication,

producing designs across all required subsystems.

6 Case studies∗

The design environment presented herein was
used to create a variety of different robots. Because the
system is process agnostic, any of a number of rapid
prototyping manufacturing techniques can be used to
realize the generated designs. The robots presented
in this section were all laser cut from 0.010” (0.25mm)
thick polyester (PET) sheet, then folded to their final
3D geometries. The electronic components were incor-
porated into the structure during the folding process.
Generated drawings guide the user along the steps in
the folding process, aiding a novice designer in the
fabrication of these robots. More hands-off fabrication
processes can be used to reduce the skill requirements
on the user – the same designs were made using e.g. 3D
printed structures and origami self-folding laminates
in [30].

6.1 Two-Wheeled Roller
A two-wheeled mobile robot base is shown in

Fig. 10. The robot, nicknamed the Seg, is specified by

∗Some work in this section was previously published in [3].

Seg

Brain

EBrain

Firmware

Arduino

Mount

Cutout

Beam Cutout

MotorMount

Beam

Cutout

Servomotor

Firmware

UI element

Tail

Beam

Wheel

Spoke

Component type

Mechanical

Electrical

Software

Integrated

Fig. 9. Each node on this tree represents a component in the design

of the two-wheeled robot, generated solely by composing its child

nodes. The leaf nodes were design by expert designers, but every

higher level of the design can be assembled from its children by a

casual user.

three parameters:

1. the specific microprocessor module used (in this
case the Arduino Pro Mini) and its dimensions,

2. the specific continuous rotation servos used as
drive motors (in this case Turnigy TGY-1370’s) and
its dimensions, and

3. the desired ground clearance (in this case set to be
25mm).

The user can design a Seg from an extended electrome-
chanical component library by attaching two motor
mounts to a central body, along with a tail for stability.
The functionality of the robot is defined by the flow of
information from a human source to the drive wheels
as a mechanical sink. A component defining a UI slider
is the information source, generating information at a
data output port from human interaction. A firmware
driver is the next component in the chain, converting
the data value from the UI element into an electrical
signal on a microcontroller output pin. An electrical
component defining the servomotor actuator takes the
electrical signal and generates a mechanical output an-
gle of the servo horn. This finally gets connected to
the wheel for a mechanical sink, achieving the desired
robot functionality.

In practice, the design process is greatly simpli-
fied by breaking the design into a multilayer hierarchy.
For instance, the components defining the servomotor
firmware driver and discrete electronic device are com-
bined into a higher level integrated component that
translates a data input value to a mechanical output,
abstracting away the internal details until the final de-
sign outputs are generated. The final component-based
hierarchical design is presented in Fig. 9.

Since the necessary mechanical, electrical, and soft-
ware designs are encapsulated within the components,
the compilation of the complete design creates mechan-
ical drawings for the body and wheels as well as code
for the central microcontroller. The electrical subsys-
tem gets resolved into a wiring diagram, software and

Fig. 10. The Seg, a two-wheeled mobile robot, was compiled from

modular electromechanical components. Electrical components are

directly connected to the brain using the modular software interface.

Table 1. Performance of two-wheeled Seg robot folded from laser-

cut 0.010” (0.25mm) PET film. *The same design made from 0.005”

(0.13mm) PET film weighs 36g, while a paper version weighs 31g.

Other metrics remain unchanged.

Approximate design time 1 hr

Approximate fabrication time 20 min

Approximate cost 20.00 USD

Weight 42 g*

Maximum speed 23 cm/s

Turning radius (both wheels driven) 0 cm

Turning radius (one wheel driven) 4 cm

firmware snippets get pooled together, and the me-
chanical mounts get physically linked. Instructions for
connecting the modules and devices are then displayed
to the user, and an auto-generated smartphone app
containing the controlling UI blocks can immediately
be used to drive the robot. A summary of the robot’s
characteristics are provided in table 1.

The design environment is also able to auto-
generate autonomous driving code for this robot. Ad-
ditional electronic components comprising an LED and
a photosensor (each an integrated derived components
containing both a pure electrical subcomponent and a
firmware driver) can be added to the design. Their
data outputs can be wired through data manipulation
blocks into the data input ports of the integrated mo-
tor component and replace the previous UI elements.
Since there is no UI, app code is no longer generated;
instead the on-board microcontroller runs autogener-
ated code to autonomously drive the robot in a line-
following pattern. The resulting system is shown in
Fig. 1.

Ant

Brain

EBrain

Firmware

Arduino

Mount

Cutout

Beam Cutout

HalfAnt

FixedLegs

Beam Leg

MovingLegs

Motor

Beam

Cutout

Servomotor

Firmware

UI element

FourBar Leg

Fig. 11. The design of the walking robot is similar to that of the Seg,

with the addition of mechanical leg and flexure components. The

higher-level brain and motor components, shaded in the diagram, can

be reused from the earlier design.

Fig. 12. A complex hexapod walker can be generated adapting ex-

isting library elements generated from past designs.

6.2 Hexapod Walker

An insect-like legged robot can be created using
compliant joints to add kinematic degrees of freedom
for a more complex design. A stationary base is formed
from four non-moving legs, while two other legs are
circularly actuated by drive motors to provide a walk-
ing gait. The moving legs remain parallel and are
constrained to move in a plane by flexural four-bar
linkages. The design of this robot was adapted from
the earlier Seg design, with many components directly
taken from that. This was enabled by the modular de-
sign paradigm, greatly simplifying and speeding up
the creation of the hexapod.

An information flow similar to the wheeled robot
above defines the robot design, with an additional me-
chanical component defining a four bar linkage trans-
lating the circular mechanical output of the motor shaft
into the walking gait of the moving legs. The compo-
nent hierarchy can be seen in Fig. 11, and the resulting
structure can be seen in Fig. 12.

6.3 Grasping Arm

A markedly different robotic configuration is cre-
ated for the multi-segment manipulator arm shown in

Plotter

Brain Arm

ActuatedHinge

Servo

Motor

EModule

Mount

Cutout

Hinge Tendon

Face Cutout

Beam

ActuatedGripper

Servo Gripper

Block Finger

Beam

Fig. 13. The design tree for the gripper arm shows how a com-

plex electromechanical device can be hierarchically assembled from

simpler mechanisms. The integrated brain and servo modules are

adapted from the earlier robots with slight modifications to enable

daisy chained electronic modules, and the servo module is shared

between the hinge and gripper mechanisms.

Fig. 14. A robotic manipulator arm was generated by serially con-

necting integrated actuated hinge and gripper modules.

Fig. 14. In this robot, an actuated gripper is positioned
by a sequence of actuated hinge joints. The design tree,
shown in Fig. 13, illustrates the hierarchical composi-
tion; for example, the end effector itself is an integrated
electromechanical mechanism included in the higher
level assembly. This robot also employs the electrical
hardware modules, such that each actuated hinge and
gripper module contains an independent integrated
mechanical structure, actuator, drive circuit, and con-
trol logic. The plug-and-play electrical modules enable
a distributed electrical system along the arm.

The designed arm automatically generated a
smartphone UI to allow immediate human control.
Some performance metrics of the fabricated robot are
presented in table 2.

7 Conclusions and Future Work
The system presented in this paper implements

a unified design environment allowing users to cre-
ate robotic mechanisms from a library of integrated
mechanical, electrical, and software components. The
building blocks can be created by expert designers, al-

Table 2. Performance of an arm folded from laser-cut 0.010”

(0.25mm) PET film.

Approximate design time 1 hr

Approximate fabrication time 30 min

Approximate cost 27.00 USD

Weight 60 g

Maximum joint angle (actuated) ±35 deg

Maximum joint angle (mechanism) ±110 deg

Gripper Strength (on 1.5 cm object) 100 mN

lowing casual users to quickly and easily create cus-
tom programmed electromechanical mechanisms. The
value of this paradigm is demonstrated by the various
robots created using the system presented above. In a
matter of hours, the high-level structural specification
of a desired device was able to be realized into auto-
matically generated fabrication files, control software,
and user interfaces, creating immediately usable robots
complete with driver interfaces and autonomous be-
havior. This system brings into reach the goal of a com-
plete robot compiler to incorporate custom robotics
into the domain of personal on-demand use.

This work demonstrates an infrastructure for auto-
mated robot design, opening up a large body of future
research to extend and enhance the system. The next
steps can focus on assisting a user with design deci-
sions. A recommendation engine can analyze existing
components to suggest possible connections or compo-
nents to add to a design in progress. The system can
also help closing the design loop by incorporating be-
havioral analysis. Component definitions can include
a composable model of their kinematics and dynam-
ics, generating outputs suitable for simulations and an-
alytic characterizations. The complete behavior of a
design can be verified and validated against the func-
tional requirements of the user.

In the long run, an independent design loop can
iterate through automatically generated robot compo-
sitions, analyzing and updating the design based on
the characterization output, thus leading to an intelli-
gent compiler that can autonomously generate a cus-
tom robot design based on a high level task descrip-
tion.

Acknowledgments
This work was funded in part by NSF grants

1240383 and 1138967 and NSF Graduate Research Fel-
lowship 1122374, for which the authors express thanks.

References
[1] Mehta, A. M., et al., 2013. “A scripted print-

able quadrotor: Rapid design and fabrication of

a folded MAV”. In 16th International Symposium
on Robotics Research.

[2] Mehta, A. M., and Rus, D., 2014. “An end-to-
end system for designing mechanical structures
for print-and-fold robots”. In Robotics and Au-
tomation (ICRA).

[3] Mehta, A. M., DelPreto, J., Shaya, B., and Rus,
D., 2014 (to appear). “Cogeneration of mechani-
cal, electrical, and software designs for printable
robots from structural specifications”. In Intelli-
gent Robots and Systems (IROS).

[4] Mavroidis, C., DeLaurentis, K. J., Won, J., and
Alam, M., 2001. “Fabrication of non-assembly
mechanisms and robotic systems using rapid pro-
totyping”. Journal of Mechanical Design, 123(4),
pp. 516–524.

[5] Richter, C., and Lipson, H., 2011. “Untethered
hovering flapping flight of a 3d-printed mechan-
ical insect”. Artificial life, 17(2), pp. 73–86.

[6] Rossiter, J., Walters, P., and Stoimenov, B., 2009.
“Printing 3d dielectric elastomer actuators for soft
robotics”. In SPIE Smart Structures and Materi-
als+ Nondestructive Evaluation and Health Mon-
itoring, International Society for Optics and Pho-
tonics, pp. 72870H–72870H.

[7] Hoover, A. M., and Fearing, R. S., 2008. “Fast scale
prototyping for folded millirobots”. In Robotics
and Automation (ICRA), 2008., IEEE, pp. 886–892.

[8] Liu, Y., Boyles, J., Genzer, J., and Dickey, M., 2012.
“Self-folding of polymer sheets using local light
absorption”. Soft Matter, 8, pp. 1764–1769.

[9] Shimoyama, I., Miura, H., Suzuki, K., and Ezura,
Y., 1993. “Insect-like microrobots with external
skeletons”. Control Systems, IEEE, 13(1), pp. 37–41.

[10] Brittain, S., et al., 2001. “Microorigami: Fabrica-
tion of small, three-dimensional, metallic struc-
tures”. Journal of Physical Chemistry B, 105(2),
pp. 347–350.

[11] Hawkes, E., et al., 2010. “Programmable matter
by folding”. Proceedings of the National Academy of
Sciences, 107(28), pp. 12441–12445.

[12] Tolley, M., Felton, S., Miyashita, S., Xu, L., Shin,
B., Zhou, M., Rus, D., and Wood, R., 2013. “Self-
folding shape memory laminates for automated
fabrication”. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS),
IEEE.

[13] Onal, C. D., Wood, R. J., and Rus, D., 2011. “To-
wards printable robotics: Origami-inspired planar
fabrication of three-dimensional mechanisms”. In
Robotics and Automation (ICRA), IEEE, pp. 4608–
4613.

[14] Birkmeyer, P., Peterson, K., and Fearing, R. S.,
2009. “Dash: A dynamic 16g hexapedal robot”.
In Intelligent Robots and Systems (IROS), IEEE,
pp. 2683–2689.

[15] Onal, C., Wood, R., and Rus, D., 2013. “An
origami-inspired approach to worm robots”.

Mechatronics, IEEE/ASME Transactions on, 18(2),
April, pp. 430–438.

[16] Demaine, E. D., and Tachi, T., 2009. Origamizer: A
practical algorithm for folding any polyhedron.

[17] Lang, R., 2012. Origami design secrets : mathematical
methods for an ancient art. A K Peters/CRC Press.

[18] Pepakura designer. http://www.tamasoft.

co.jp/pepakura-en/. [Online; accessed 26-
May-2014].

[19] Parnas, D. L., 1972. “On the criteria to be used
in decomposing systems into modules”. Commun.
ACM, 15(12), Dec., pp. 1053–1058.

[20] Farritor, S., and Dubowsky, S., 2001. “On modu-
lar design of field robotic systems”. Autonomous
Robots, 10(1), pp. 57–65.

[21] Hornby, G., Lipson, H., and Pollack, J., 2003.
“Generative representations for the automated de-
sign of modular physical robots”. Robotics and Au-
tomation, IEEE Transactions on, 19(4), Aug, pp. 703–
719.

[22] Davey, J., Kwok, N., and Yim, M., 2012. “Em-
ulating self-reconfigurable robots-design of the
smores system”. In Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Confer-
ence on, IEEE, pp. 4464–4469.

[23] LEGO Mindstorms. http://mindstorms.

lego.com. [Online; accessed 01-Nov-2014].
[24] MOSS. Modular Robotics. http://www.

modrobotics.com/moss. [Online; accessed 01-
Nov-2014].

[25] VEX Robotics. http://www.vexrobotics.

com. [Online; accessed 01-Nov-2014].
[26] Bachrach, J., Vo, H., Richards, B., Lee, Y., Wa-

terman, A., Avižienis, R., Wawrzynek, J., and
Asanović, K., 2012. “Chisel: constructing hard-
ware in a scala embedded language”. In Proceed-
ings of the 49th Annual Design Automation Con-
ference, ACM, pp. 1216–1225.

[27] OpenSCAD. The programmers solid 3D CAD
modeller. http://www.openscad.org. [On-
line; accessed 01-Nov-2014].

[28] Freese, M., Singh, S., Ozaki, F., and Matsuhira, N.,
2010. “Virtual robot experimentation platform v-
rep: A versatile 3d robot simulator”. In Simulation,
Modeling, and Programming for Autonomous Robots,
N. Ando, S. Balakirsky, T. Hemker, M. Reggiani,
and O. von Stryk, eds., Vol. 6472 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg,
pp. 51–62.

[29] YAML. http://www.yaml.org/. [Online; ac-
cessed 01-Nov-2014].

[30] Mehta, A. M., Bezzo, N., An, B., Gebhard, P., Ku-
mar, V., Lee, I., and Rus, D., 2014 (to appear).
“A design environment for the rapid specifica-
tion and fabrication of printable robots”. In In-
ternational Symposium on Experimental Robotics
(ISER).

