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Resilient and Consistent Multirobot Cooperative
Localization With Covariance Intersection

Tsang-Kai Chang , Kenny Chen , and Ankur Mehta

Abstract—Cooperative localization is fundamental to au-
tonomous multirobot systems, but most algorithms couple inter-
robot communication with observation, making these algorithms
susceptible to failures in both communication and observation
steps. To enhance the resilience of multirobot cooperative local-
ization algorithms in a distributed system, we use covariance in-
tersection to formalize a localization algorithm with an explicit
communication update and ensure estimation consistency at the
same time. We investigate the covariance boundedness criterion
of our algorithm with respect to communication and observation
graphs, demonstrating provable localization performance under
even sparse communications topologies. We substantiate the re-
silience of our algorithm as well as the boundedness analysis
through experiments on simulated and benchmark physical data
against varying communications connectivity and failure metrics.
Especially when interrobot communication is entirely blocked or
partially unavailable, we demonstrate that our method is less af-
fected and maintains desired performance compared to existing
cooperative localization algorithms.

Index Terms—Cooperative localization, covariance intersection
(CI), distributed estimation, Kalman filtering.

I. INTRODUCTION

LOCALIZATION is one of the most fundamental elements
for autonomous mobile robots. As multiple robots form

a team to improve robustness and scalability, localization of
a multirobot system is therefore a premise to the successful
deployment of such system to achieve high-level goals.

Different from a single-robot scenario, there are two addi-
tional aspects that enable multiple robots to localize themselves
cooperatively. First, a robot can observe other robots and the
relative observation between them can enhance the overall local-
ization performance. Second, robots can share their information
with one another, which can also improve the overall localization
performance. This scheme is called cooperative localization.
Different approaches are proposed for multirobot cooperative
localization, ranging from the extended Kalman filter (EKF),
the particle filter, to optimization-based approaches. Among all
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approaches of cooperative localization, we focus on the EKF-
based approaches primarily due to its computational efficiency.

While cooperative localization takes advantage of relative
observation and interrobot communication, designing a coop-
erative localization algorithm has its own difficulties. By con-
sidering localization as an estimation problem, estimation con-
sistency remains a challenge for multirobot systems. Intuitively,
as a correlation implies the dependence between two estimates,
if these two estimates are fused with underestimated correlation,
the resulting estimate no longer accounts for the estimation
uncertainty and the overconfidence problem occurs. An extreme
example is to regard two repetitive datapoints as two independent
information in data fusion, and therefore some researchers also
refer this problem as the double counting problem. In EKF,
the linearization step also results in the inconsistency problem,
mainly due to a mismatch from the linear state space model and
the Gaussian assumption [1]–[3]. We stay with the assumption
that linearization is reasonable and address the inconsistency
problem associated with interrobot correlations.

In order to keep each interrobot correlation updated, commu-
nication is often extensively performed, but excessive commu-
nication poses resilience concern. In particular, the resilience of
the cooperative localization algorithm ensures the performance
does not drastically fall off in face of the communication failures
or even adversaries. In the seminal cooperative localization
algorithm [4], an all-to-all communication is required after every
observation in order to maintain correlations equivalent to a
centralized EKF. Tracking correlations in a distributed system
not only requires extensive communications, but it also makes
the system vulnerable to even a single communication failure.
The following works attempt to decrease the amount of commu-
nication either by introducing additional server in the distributed
system [5], or by sacrificing the estimation consistency [6], [7].
For either improvement, communication is regarded as one of
the steps in an observation update and takes place right after a
relative observation. However, such association strongly relies
on the assumption that communication is available whenever
needed. In short, in most cooperative localization algorithms,
communication between robots is either excessive or is implic-
itly assumed to be always available and free from failure, which
makes these algorithms less resilient.

To maintain estimation consistency and to ensure commu-
nication resilience, we separate the communication step from
the observation step in the proposed algorithm by using the
covariance intersection (CI) fusion technique [8]–[11]. In this
algorithm, the estimation consistency is directly assured by
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CI. Since the communication step is explicit in the proposed
algorithm, communication is no longer a complementary part
after the observation but rather an independent source con-
tributing further information. Therefore, the proposed algorithm
does not need excessive communications, and communication
unavailability will not affect our algorithm’s observation update
which enhances the resilience. CI-based cooperative localiza-
tion algorithms are commonly criticized by having an overly
conservative estimate. This work fundamentally avoids this
overly conservative estimation problem by limiting CI only to
the communication update, and it is shown that the localiza-
tion performance is comparable to the algorithm based on the
centralized EKF.

In addition to the proposal of the algorithm, we complete this
article with a performance analysis on the proposed algorithm.
By interpreting the proposed algorithm as a distributed esti-
mation algorithm, we investigate the covariance boundedness
criterion to assure an upper bound on localization performance.
To address the nature of multiagent system, the analysis takes the
configuration of observation and communication into account
with graph description.

This article is a revised and substantially extended version
of our previous conference publication [12]. The conference
paper aims to formalize the algorithm, but the investigation of
the resilience is only presented in this article. Moreover, we
extensively consider various scenarios in this article to study
the effect of communication failures on different algorithms.
Technically, the conference paper assumes that the orientation
estimate is given, and we drop that assumption to ensure the
applicability of the proposed algorithm in this article.

II. RELATED WORK

The concept of cooperative localization is first proposed
in [13], and the term “cooperative localization” is later coined
in [14]. The work [15] extends the techniques in [13] to an exper-
imental setting. The cooperative localization is also developed
in a team of small robots [16] to globally localize the team.
While these algorithms are able to use the relative observation
and the interrobot communication, they are limited to particular
system settings. In the early stage of the cooperative localization
development, these algorithms establish the basis for current
cooperative localization algorithms that are more fundamental
and general.

Depending on the underlying framework, we classify cur-
rent cooperative localization algorithms into three categories:
EKF-based approaches, particle filter-based approaches, and
optimization-based approaches. In this section, we highlight
the advantages of each algorithm as well their limitations, with
specific focus on estimation consistency and communication
resilience.

A. Extended Kalman Filter-Based Approaches

EKF-based approaches are the mainstream for cooperative
localization algorithms. The benchmark of the EKF-based ap-
proach is established in the seminal paper [4], together with

its theoretical analyses in [17] and [18]. This cooperative lo-
calization algorithm emphasizes the importance of correlations
between interrobot estimates, and is fundamentally free from
the overconfidence problem. In particular, this algorithm is
exactly a distributed implementation of the centralized Kalman
filter, and the correlations between interrobot estimates are well
tracked and updated. However, the communication cost for
this distributed implementation is very high. In particular, an
all-to-all communication is needed after every observation. As
a result, the algorithm performance is very susceptible to the
communication failure. The estimation consistency no longer
holds with a single communication failure, which impairs the
system’s overall resilience. To lower the communication cost
in [4], a server in charge of calculating and broadcasting the
estimation information is introduced in [5]. Therefore, all-to-all
communication is no longer necessary to recover exact inter-
robot correlations. However, the introduction of the server makes
the whole system less distributed. Not only is the entire system
more vulnerable to the server’s failure, but also an initial setup
of the server is required.

Beyond the proposal of the algorithm itself, the theoretical
analysis of this centralized-equivalent algorithm is reported
in [17] and [18]. In [17], with an implicit assumption that all-to-
all communication is available and successful at all times, the
observation configuration criterion of the bounded covariance
is thoroughly investigated. We conduct a similar boundedness
analysis for our algorithm, especially on the observation and
the communication configurations without the assumption of
perfect communication. In [18], the linearization consistency
issue of EKF-based localization algorithms is presented, with
focus on the linearization points while calculating the Jacobians.
In this article, we maintain the assumption that linearization error
is small, and focus on the linear estimation in the performance
analysis in Section V.

The overconfidence problem can be avoided by only fusing
uncorrelated estimates in a multirobot system. This idea is
substantiated by keeping a bank of filters in each robot [19],
[20]. In [19], each underwater vehicle maintains a bank of EKFs
and only uncorrelated estimates in the bank are fused subse-
quently. A similar localization method is proposed for mobile
robots while simultaneously tracking targets in [20]. The main
disadvantage of this category is that the number of the filters in a
single bank grows exponentially with the number of the robots in
a system, which imposes significant storage cost. Another way
to realize this idea, called the state exchange scheme, is proposed
in [21]. Specifically, there is no fusion but rather replacement
within robot estimates to maintain the independence between
robot estimates. Historical information is therefore discarded
with the arrival of new information, which leads to extremely
inefficient estimates.

Instead of retrieving exact interrobot correlations, some ap-
proaches approximate the correlations and thus largely decrease
communication cost. CI is often applied in these approaches,
since it can fuse several estimates without knowing the corre-
lations and maintain estimation consistency at the same time.
To the best of our knowledge, the first application of CI for
cooperative localization is the example in [22]. Our algorithm
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is similar to this one, but we generalize the algorithm and
systematically study the boundedness criterion in this article.
CI is also applied differently in the cooperative localization
in [23]. In this algorithm, each robot only keeps its own state
estimate, and the relative observation is fused by CI. As a
consequence, the estimation is very conservative in this method.
On the contrary, in our algorithm, robots keep an estimate of the
entire system, and relative observations can directly update the
estimate. Consequently, our algorithm is not overly conservative,
as verified by the experiments in Section VI. An extended work
of [23] is presented in [24] by incorporating the covariance
union. However, as an even more conservative fusion scheme
than CI, this algorithm with covariance union is too conservative
for any practical use.

While algorithms based on CI ensure estimation consistency,
some other algorithms with approximated correlations do not
maintain such property. The split CI is applied in cooperative
localization in [6]. The main drawback of this approach is that
the independent part and the dependent part can not be clearly
split. Therefore, the fusion in relative observation is problematic,
as mentioned in [23]. In [7], the exact covariance matrix is
approximated by a block diagonal matrix, and the interrobot
correlations are thus suppressed. Since the estimation consis-
tency is not maintained, the overconfidence problem can occur
when applying this algorithm. A cooperative localization algo-
rithm that targets at the scenario with measurements at different
time instances is proposed in [25]. However, the fundamental
Kalman filtering assumption of the noise independence has to
be contradicted to avoid recursive updates among robots, which
also raises the same concerns of estimation consistency.

B. Particle Filter-Based Approaches

To alleviate the nonlinearity issues in multirobot localization,
particle filters are often applied [26]–[28]. However, the corre-
lations among robot estimation are not easy to handle in particle
filter-based cooperative localization algorithms. One of the early
attempts to applying particle filter in cooperative localization can
be found in [26]. However, the correlations between robots are
ignored, and the result is overly confident. In [27], a dependence
tree is introduced to alleviate the double counting problem
between two robots, but it only avoids the most obvious cases and
still cannot prevent the overconfidence problem from happening.
In [28], a particle clustering method is introduced to reduce the
computational complexity of particle filter-based methods, but
correlations between estimates are not explicitly addressed. In
fact, the authors wrongly assume the independence between the
estimates in different robots in reciprocal sampling.

In summary, particle filter-based multirobot cooperative lo-
calization algorithms cannot track the correlations between dis-
tributed estimates easily. Moreover, particle filters are generally
more computationally expensive compared to Kalman filter-
based approaches.

C. Optimization-Based Approaches

Cooperative localization can also be solved with
optimization-based methods, including maximum likelihood

estimation [29] and maximum a posteriori estimation [30].
Optimization-based approaches first formulate cooperative
localization as a nonlinear least squares problem in a centralized
fashion, and then is directly solved offline. To counter the
centralized modeling and offline solving for localization,
excessive communication is necessary between distributed
robots. As a result, in both algorithms [29], [30], robots have to
broadcast their information to the entire team regularly. In terms
of the offline nature, Nerurkar et al. [30] partially tackle this
problem by marginalization, but an all-to-all communication is
expected in this marginalization step. For optimization-based
approaches, the burden of communication makes them less
popular compared to those aforementioned algorithms.

III. MATHEMATICAL PRELIMINARIES

In this section, we provide the essential mathematical pre-
liminaries to construct and analyze the proposed cooperative
localization algorithm.

A. Estimation Consistency and CI

A consistent estimate can be seen as a conservative estimate
regarding the estimation uncertainty intuitively. In other words, a
conservative estimate reports larger uncertainty than the estimate
really provides, so as to avoid overconfidence data fusion. As we
use Gaussian random vectors as estimates, since the covariance
matrix represents the uncertainty of the estimate, a consistent
estimate can be considered as an estimate that has larger covari-
ance matrix in the positive definite sense. The aforementioned
overconfidence problem and the double counting problem can
be avoided if estimation consistency is maintained. Formally, a
consistent estimate is mean-preserving and has no smaller co-
variance matrix in the positive definite sense, with the following
definition.

Definition 1 (Estimation consistency): An estimate ẑ of a
real vector z is a Gaussian random vector with mean E[ẑ] and
covariance Σẑ . The estimation ẑ′ of z is called consistent of ẑ if
E[ẑ′] = E[ẑ] and Σẑ′ ≥ Σẑ .

Lemma 1 (CI [8]–[11]): Given N consistent estimates ẑi of
ẑ with covariances Σi for i = 1, . . . , N , the estimate ẑ′ is also
consistent of ẑ with

Σ−1
ẑ′ =

N∑
i=1

ciΣ
−1
i (1)

and

E[ẑ′] = Σẑ′

N∑
i=1

ciΣ
−1
i E[ẑi] (2)

where the nonnegative coefficients ci satisfy
∑N

i=1 ci = 1.
CI is able to combine several consistent estimates which might

be correlated, and the result stays consistent. The nonnegative
coefficients {ci, i = 1, . . . , N} such that

∑N
i=1 ci = 1 are called

the convex coefficients.
As all the estimates are Gaussian random vectors, they can be

represented in the information form, which leads to a compact
formula of CI. By defining the information mean ēi = Σ−1

i E[ẑi]
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and the information matrix Ii = Σ−1
i , (1) and (2) can be rewritten

as

Σ−1
ẑ′ =

N∑
i=1

ciIi (3)

and

Σ−1
ẑ′ E[ẑ′] =

N∑
i=1

ciēi (4)

and (Σ−1
ẑ′ E[ẑ′],Σ−1

ẑ′ ) is the information form of (E[ẑ′],Σẑ′). In
short, CI is actually the convex combination of the informa-
tion means and that of the information matrices. We will use
the information form since the infinite uncertainty is easier to
characterize in this form.

B. Graph Theory

A directed graph G = (V,EG) is applied to characterize the
configuration of communication and observation of the multi-
robot system. In the graph G, the vertex set V contains all the
agents, i.e., V = {1, . . . , N}, and an edge is an ordered pair
(j, i) ∈ EG , j �= i. We may refer an edge as a link in this article. A
path in G is given by a sequence of vertices (vi1 , vi2 , . . . , vim+1

)
such that (vik , vik+1

) ∈ EG for k = 1, . . . ,m. The graph G is
called strongly connected if there is a path for every pair of
vertices. The graph G is called weakly connected if there is
a path between every pair of vertices regardless of the edge
direction. The neighborhood of agent i is defined as NG(i) =
{j|(j, i) ∈ EG}. The inclusive neighborhood of agent i is de-
fined by N ∗

G(i) = NG(i) ∪ {i}. A complete treatment of graph
theory on multiagent systems can be found in [31].

IV. MULTIROBOT COOPERATIVE LOCALIZATION ALGORITHM

We consider a multirobot system in the 2-D scenario with
N robots. At time t, the spatial state of robot i is given by
qi,t = [θi,t, p

T
i,t], which includes the orientation θi,t and the

Cartesian position pi,t = [xi,t, yi,t]
T, for i ∈ {1, . . . , N}. We

assume that spatial states across all robots are in a common
reference frame, which can be initialized by the cooperative
localization setting [32], [33]. The robots can observe several
distinguishable landmarks whose positions are given. While
all landmarks serve as a reference for absolute spatial state,
without loss of generality, we consider a single landmark in
the environment, denoted by λ.

In the proposed cooperative localization algorithm, robot i has
to track its own spatial state and the positions of other robots. We
can represent the state of the entire system estimated by robot i
as

si,t =
[
pT
1,t, . . . , q

T
i,t, . . . , p

T
N,t

]T
. (5)

We consider that case where the orientations of other robots
are not tracked by robot i. The state defined in (5) is similar to
the one in the EKF SLAM [34], where those pi,t in (5) are not
stationary but dynamic. The proposed algorithm remains valid
when the orientations of other robots are tracked with various

sensing modalities. In fact, the proposed algorithm will be easier
if all robots track the same state. We instead demonstrate the
necessary steps when the robots track different states in the
model (5).

Based on the Kalman filtering, robot i keeps a Gaussian esti-
mate of si,t, denoted by ŝi,t, with mean s̄i,t and covariance Σi,t.
Depending on the type of arriving information, the proposed
cooperative localization algorithm contains three updates:
� the time propagation update at the arrival of the proprio-

ceptive information;
� the observation update at the arrival of the exteroceptive

information;
� the communication update at the interrobot

communication.
The proposed algorithm does not require communication after

the interrobot observation. Therefore, all these three sources of
information contribute independently and complementarily to
achieve localization.

A. Time Propagation Update

The time propagation update is performed when robot i has
the proprioceptive information of the system, which consists of
its own odometry input and those of other robots. Robot i has
the odometry input ui,t, and estimates its next spatial state by a
generic motion model

qi,t+1 = f(qi,t, ui,t + wi,t) (6)

where wi,t is the input noise and it is modeled as a zero-mean
Gaussian random vector with covariance matrix Qw.

The odometry inputs for other robots, uj,t, j �= i, however,
are not available for robot i. Without the exact value, we regard
uj,t as a random variable, and the variability of that random
variable is large enough to incorporate all possible values and
to ignore the noise effect. The goal is not to guess the odometry
input of other robots, but to maintain large estimation uncertainty
that the estimate can be corrected during the observation or the
communication updates. To be specific, we model the input uj,t

as a Gaussian random vector with covariance matrix Qu large
enough to maintain the estimation consistency. That is, for robot
i,

pj,t+1 = fp(pj,t, uj,t), j �= i. (7)

As the input noise in each robot is independent, the time update
for ŝi,t can be easily obtained, as in Algorithm 1.

B. Observation Update

When robot i observes either the landmark or other robots,
the observation update is performed with the exteroceptive in-
formation. Specifically, robot i observes the landmark in the
environment according to model

oiλ,t = hiλ(qi,t) + viλ,t (8)

where viλ,t is the observation noise modeled as zero-mean
Gaussian with covariance Riλ,t. The relative observation model
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Algorithm 1: The Time Propagation Update for Robot i.
Input: s̄i,t, Σi,t, ui,t

Output: s̄i,t+1, Σi,t+1

s̄i,t+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fp(p̄1,t,E[u1,t])
...

f(q̄i,t, ui,t)
...

fp(p̄N,t,E[uN,t])

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Fi =
∂f(q,u)

∂q (q̄i,t, ui,t).

Fj =
∂fp(p,u)

∂p (p̄j,t,E[uj,t]), for j �= i.

Gi =
∂f(q,u)

∂u (q̄i,t, ui,t).

Gj =
∂fp(p,u)

∂u (p̄j,t,E[uj,t]), for j �= i.
Q = Diag(G1QuG

T
1, . . . , GiQwG

T
i , . . . , GNQuG

T
N ).

Σt+1 =
Diag(F1, . . . , FN )Σt Diag(F1, . . . , FN )T +Q.

Algorithm 2: The Observation Update for Robot i.
Input: s̄i,t, Σi,t, oi,t
Output: s̄i,t+ , Σi,t+

Hi = [
∂hij(s)

∂s (s̄i,t)]j∈Oi,t
.

s̄i,t+ =
s̄i,t +Σi,tH

T
i (HiΣi,tH

T
i +Ri,t)

−1(oi,t −His̄i,t).
Σ−1

i,t+
= Σ−1

i,t +HT
i R

−1
i,tHi.

between two robots is similarly given as

oij,t = hij(qi,t, pj,t) + vij,t. (9)

In reality, robot i can observe more than one object at the same
time, and the observation results may therefore be correlated.
Thus, we define the set Oi,t as the set of objects that robot i
observes at time t, including both landmarks and robots. With
Oi,t = {i1, i2, . . . , ini

}, we stack all the measurements at time
t into the vector oi,t,

oi,t =

⎡
⎢⎢⎣
oii1,t

...

oiini
,t

⎤
⎥⎥⎦ = [oij,t]j∈Oi,t

(10)

together with the entire observation noise vi,t = [vij,t]j∈Oi,t
.

With the covariance of the noise vi,t denoted by Ri,t, we have
the EKF observation updates

s̄i,t+ = s̄i,t +Σi,tH
T
i (HiΣi,tH

T
i +Ri,t)

−1(oi,t −His̄i,t)
(11)

and

Σ−1
i,t+ = Σ−1

i,t +HT
i R

−1
i,tHi (12)

where the observation matrix is the stacked matrix given by

Hi =

[
∂hij(s)

∂s
(s̄i,t)

]
j∈Oi,t

. (13)

C. Communication Update

When robot j sends its estimation information, in particular
s̄j,t andΣj,t, to robot i, robot i can use this information to update
its own estimation. However, the correlation between ŝi,t and
ŝj,t is hard to track in a distributed system. Without knowing the
exact correlations, we use CI to fuse these estimates to maintain
the estimation consistency.

The direct application of CI by (1) and (2) is problematic,
because ŝi,t and ŝj,t do not estimate the same state. In particular,
the orientation estimate θi,t is in ŝi,t but not in ŝj,t. In order to
ensure that ŝi,t and ŝj,t represent the same state, we first have
to remove the estimate of θj from ŝj,t, and then add the dummy
estimate of θi. We denote the resulting estimate as ŝji,t and then
the CI can be applicable at robot i.

To remove the estimate of θj from ŝj,t, we use a 2N × (2N +
1) matrix defined by

[Tj− ]m,n =

⎧⎪⎨
⎪⎩
1 if m = n, n ≤ 2(j − 1)

1 or m = n− 1, n ≥ 2j

0 otherwise

.

Therefore, Tj− ŝj,t will be the estimate of [pT
1,t, . . . , p

T
N,t] with

mean Tj− s̄j,t and covariance matrix Tj−Σj,tT
T
j− . Equivalently,

the same estimate admits an information form with the informa-
tion mean (Tj−Σj,tT

T
j−)

−1Tj− s̄j,t and the information matrix
(Tj−Σj,tT

T
j−)

−1.
Next, we insert θi to the estimate Tj− ŝj,t in the information

form to obtain ŝji,t. Since there is no information of θi from
robot j, this step just ensures that the corresponding terms in the
vector are matched, and the variance of θi in ŝji,t will be infinite.
We use a (2N + 1)× 2N matrix,

[Ti+ ]m,n =

⎧⎪⎨
⎪⎩
1 if m = n, n ≤ 2(i− 1)

1 if m = n+ 1, n ≥ 2i

0 otherwise

to append θi. Thus, the information mean of ŝji,t will be
Ti+(Tj−Σj,tT

T
j−)

−1Tj− s̄j,t, and the corresponding information
matrix will be Ti+(Tj−Σj,tT

T
j−)

−1T T
i+ . By this construction, the

exact mean of θi,t in the estimate ŝji,t is not important, since the
corresponding variance is infinite, and will not affect the result
of CI.

We define the set Ci,t to contain all robots whose information
is received at robot i at time t, and C∗

i,t = Ci,t ∪ {i}. Together
with the convex coefficient {cj , j ∈ C∗

i,t}, we have the commu-
nication update described in Algorithm 3.

V. BOUNDEDNESS ANALYSIS OF THE POSITION

ESTIMATION COVARIANCE

For the localization algorithm, the boundedness of the covari-
ance matrix ensures that the estimation uncertainty is limited,
which is essential for the success of the high-level tasks. Whether
the estimation covariance matrix of each robot is bounded or not
depends on the communication and the observation configura-
tions of the entire multirobot system. To thoroughly study the
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Algorithm 3: The Communication Update for Robot i.

Input: s̄jt , Σj,t, j ∈ C∗
i,t

Output: s̄it+ , Σi,t+

To construct the information form:
ēji,t = Ti+(Tj−Σj,tT

T
j−)

−1Tj− s̄j,t, j ∈ Ci,t

Iji,t = Ti+(Tj−Σj,tT
T
j−)

−1T T
i+ , j ∈ Ci,t

To fuse incoming estimates by CI:
s̄i,t+ = Σi,t+(

∑
j∈Ci,t

cj ē
j
i,t + ciΣ

−1
i,t s̄i,t).

Σ−1
i,t+

=
∑

j∈Ci,t
cjI

j
i,t + ciΣ

−1
i,t .

covariance boundedness, we focus on a particular system with
the widely used motion and observation models. We then derive
the covariance upper bound of the estimation covariance, and
apply the result from the distributed estimation algorithm to
obtain the boundedness criterion.

Specifically, we consider a system with unicycle motion
model and the bearing-and-range measurements to demonstrate
the analysis. We furthermore impose two assumptions:

1) Each robot has its orientation estimate, and the upper
bound of the orientation estimate variance σ2

θ is small and
given.

2) The observation and communication configurations are
invariant over time, including the CI coefficients.

As introduced in [17], the first assumption decouples the
position estimation from the orientation estimation, which is the
main source of the linearization inconsistency problem [1]–[3].
As the EKF heavily relies on the linearization approximation,
the requirement of small orientation error also ensures the appli-
cability of ongoing analysis. The second assumption is imposed
to assure that the entire system configuration is stationary. As a
result, the boundedness analysis of the cooperative localization
algorithm can be achieved by that of the distributed estimation
algorithm [35].

With the assumption that the orientation estimate is provided,
all robots now estimate the same state, or the positions of all
robots, denoted by ξt = [pT

1,t, . . . , p
T
N,t]

T. The estimate of ξt at

robot i is ξ̂i,t, with mean ξ̄i,t and covariance Φi,t. While all the
robots are estimating the same state, the communication step
just degenerates to the vanilla CI step.

A. System Model

Given the velocity input ui,t, the unicycle model describes
the state propagation as

pi,t+1 =

[
xi,t + (ui,t + wi,t)Δt cos θi,t

yi,t + (ui,t + wi,t)Δt sin θi,t

]
(14)

where wi,t denotes the input noise and Δt is the time interval
between two consecutive update points.

In terms of the observation model, we first set up a generic
relative observation model, whose observability can be explicitly
characterized. We then use the relative observation model as
an intermediate step to analyze the bearing-and-range measure-
ments. When robot i observes object j, which can be either

another robot or a landmark, the relative measurement oij,t is
given by

oij,t = CT(θi,t)(pj,t − pi,t) + vij,t (15)

where C(θ) = [ cos θ −sin θ
sin θ cos θ ] is the rotation matrix. The obser-

vation noise vij,t is a zero-mean Gaussian random vector with
covarianceRv,ij . If robot i observes object j by the bearing mea-
surement φij and the range measurement rij , we characterize
this measurement as

o′ij,t =

[
φij,t

rij,t

]
+ v′ij,t

=

[
tan−1

(
yj,t−yi,t

xj,t−xi,t

)
− θi,t√

(xj,t − xi,t)2 + (yj,t − yi,t)2

]
+ v′ij,t. (16)

With the bearing measurement φij,t and the range measurement
rij,t, the relative measurement can be obtained by

oij,t = rij,t

[
cos(φij,t)

sin(φij,t)

]
(17)

together with the noise by linearizing (17)

vij,t =

[
−rij,t sin(φij,t) cos(φij,t)

rij,t cos(φij,t) sin(φij,t)

]
v′ij,t. (18)

B. Cooperative Localization Algorithm

We now apply the proposed cooperative localization algo-
rithm on this particular model. By linearizing (14), the error
propagation equation of robot j becomes

p̃j,t+1 = p̃j,t +Δt

[
cos θj,t −uj,t sin θj,t

sin θj,t uj,t cos θj,t

][
ũj,t

θ̃j,t

]
. (19)

For j = i, the odometry input ui,t is known, ũi,t = wi,t, and
therefore the covariance increment is given by

GiQwG
T
i = (Δt)2C(θi,t)

[
Σw 0

0 u2
i,tσ

2
θ

]
CT(θi,t). (20)

For j �= i, we model the odometry input uj,t itself as a random
variable with variance σ2

u, since it is not available for robot i.
The covariance increment upper bound can then be taken as

GjQuG
T
j = (Δt)2 max(σ2

u, u
2
maxσ

2
θ)I2. (21)

In summary, the covariance is update by

Φi,t+1

= Φi,t + Diag(G1QuG
T
1, . . . , GiQwG

T
i , . . . , GNQuG

T
N ).
(22)

As for the observation update, based on (15), the observation
error can be linearly approximated as

õij,t ≈ CT(θ̂i,t)Ȟij ξ̃i,t + CT(θ̂i,t)JȞij ξ̂i,tθ̃i,t + vij,t (23)

to distinguish the estimation error ξ̃i,t, the orientation estimation
error θ̃i,t, and the measurement noise vij,t, where J = [ 0 1

−1 0 ].
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If the observed object j is a landmark,

Ȟij =

⎡
⎢⎣02×2 · · · −I2︸︷︷︸

i

· · · 02×2

⎤
⎥⎦
2×2˜N

(24)

while the observed object is robot j, then

Ȟij =

⎡
⎢⎣02×2 · · · −I2︸︷︷︸

i

· · · I2︸︷︷︸
j

· · · 02×2

⎤
⎥⎦
2×2N

.

(25)
The covariance of the innovation õij,t is then given by

E[õij,tõT
ij,t] = CT(θ̂i,t)ȞijΦi,tȞ

T
ijC(θ̂i,t) +Rθi,j,t +Rv,ij

(26)
where Rθi,j,t = Ȟθi,j,tσ

2
θi,t

ȞT
θi,j,t

and Ȟθi,j,t =

CT(θ̂i,t)JȞij ξ̂i,t.
For multiple observation case, we stack the observation errors

and obtain

õi,t ≈ [CT(θ̂i,t)Ȟij ]j∈Oi
ξ̃i,t+[C

T(θ̂i,t)JȞij ]j∈Oi
ξ̂i,tθ̃i,t+vi,t

= ΞT
i,tȞiξ̃i,t +

(
I|Oi| ⊗ CT(θ̂i,t)J

)
Ȟiξ̂i,tθ̃i,t + vi,t

where vi,t = [vij,t]j∈Oi,t

Ȟi =
[
Ȟij

]
j∈Oi

(27)

Ξi,t = I|Oi| ⊗ C(θ̂i,t), and ⊗ stands for the Kronecker product.
The overall observation covariance can be expressed as

E[õi,tõT
i,t] = ΞT

i,tȞiΦi,tȞ
T
i Ξi,t +Rθi,t +Rv,i (28)

where the first term comes from the position estimation error.
The covariance is then updated in the observation update by

Φ−1
i,t+ = Φ−1

i,t + ȞT
i Ξi,t (Rθi,t +Rv,i)

−1 ΞT
i,tȞi. (29)

While the above derivations follow the relative observation
model, the corresponding error approximation for bearing-and-
range observation model can be obtained with (17) and (18).

C. Covariance Upper Bound

As the matrix propagation of Φi,t involves time-dependent
coefficients, we set up an upper bound matrix Ψi,t of Φi,t with
invariant coefficients. In the time propagation update, we can
choose

Q̌ = (Δt)2 max(σ2
u, u

2
maxσ

2
θ)I2˜N (30)

and update Ψt by

Ψi,t+1 = Ψi,t + Q̌ (31)

when Φi,t is updated by (22). Similarly, for the observation
update, while Φt is updated by (29), we can find a positive
definite matrix Ři such that Ř−1

i ≤ Ξi,t(Rθi,t +Rv,i)
−1ΞT

i,t,
and updateΨt according to

Ψ−1
i,t+ = Ψ−1

i,t + ȞT
i Ř

−1
i Ȟi. (32)

For the communication step, Φi,t is updated by the conventional
CI formula, and so it Ψi,t.

By this construction, with the same initial condition, orΦi,0 =
Ψi,0, we have Φi,t ≤ Ψi,t for all t. In other words, Ψi,t is an
upper bound of Φi,t. We then show the boundedness criterion
of Ψi,t, which leads to the boundedness of Φi,t.

D. Covariance Boundedness Analysis

We now apply the result of the distributed Kalman filter with
CI in [35] to analyze the covariance boundedness of Ψi,t. To
explicitly characterize the relations among all robots, we use
graphs to describe the observation and the communication con-
figurations in the multirobot system. We define the observation
graph and the communication graph separately to distinguish
the observation and the communications relations. We define the
observation graph of robot i as a graph GOi

= {Ω∗, EOi
}. The

nodes of the graph Ω∗ = {1, . . . , n, λ}, which includes all the
robots as well as the landmark. The pair (i, j) ∈ EOi

if j ∈ Oi.
In other words, the links in the observation graph GOi

stand
for the observation from robot i to entity j.1 We also define
the communication graph as a graph GC = {Ω∗, EC}, where
(i, j) ∈ EC if j ∈ Ci. We then can use the following notation
to collect all the robots that contribute the information to robot
i by the communication links.

Definition 2 (Super Neighborhood [35]): For j �= i, j ∈ Si

if there exists a path in GC from j to i.
We define that S∗

i = Si ∪ {i}.
Proposition 1 (The Boundedness Criterion): If the graph

Gi = (Ω∗,∪j∈S∗
i
EOj

) is weakly connected, then Φi,t is
bounded.

Proof: First of all, (31) and (32) are exactly those equations
(8) and (12) in [35]. Therefore, we can consider the upper
bound of the cooperative localization Ψt as a realization of
the distributed estimation algorithm described in [35], whose
boundedness criterion has been established.

We then show that (F, [Ȟj ]j∈S∗
i
) is observable if the graph Gi

is weakly connected. If the landmark λ is not connected in Gi,
or no landmark is observed by any robot in S∗

i , then

[Ȟj ]j∈S∗
i
= D(Gi)⊗ I2

up to row reordering, where D(Gi) is the incidence matrix of Gi

[36, p. 202]. If the landmark λ is connected in Gi,

[Ȟj ]j∈S∗
i
= D(Gi)

′ ⊗ I2 (33)

up to row reordering, where D(Gi)
′ is defined by removing the

landmark row in D(Gi). Therefore, (33) holds for all cases. If
Gi is weakly connected, D(Gi)

′ is full rank, and D(Gi)
′ ⊗ I2 is

also full rank, which implies the observability of (F, [Ȟj ]j∈S∗
i
).

Since (F, [Ȟj ]j∈S∗
i
) is observable and (F,Q1/2) is control-

lable, Ψi,t is bounded by [35, Th. 1], which implies that Φi,t is
also bounded. �

Proposition 1 is given in a different form in our prior
work [12], but a clearer treatment with graph theory is provided
here. Proposition 1 states that as long as all the information
collected by robot i covers the entire robot team, the information

1The definition of the observation graph is different from the observation
topology defined in [35], since the raw observations are not exchanged in this
cooperative localization algorithm.
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Fig. 1. System topology with N = 5 robots in the simulation. The commu-
nication graph is specified for the GS algorithm. For the LS algorithms, a fully
connected communication graph is inherently required.

is sufficient enough to localize the entire robot team, which leads
to bounded Ψi,t and bounded Φi,t as well. Proposition 1 also
signifies that the information can come either from observation
or from communication, and both sources contribute to the
localization performance.

VI. RESULTS

In this section, we present the performance and the resilience
of our algorithm as compared to other four state-of-the-art
multirobot cooperative localization methods. Based on the state
tracked in a single robot and the underlying method, for sim-
plicity, we rename all five algorithms as

1) the local-state centralized equivalent (LS-Cen) [4];
2) the local-state CI (LS-CI) [23];
3) the local-state split CI (LS-SCI) [6];
4) the local-state block diagonal approximation

(LS-BDA) [7];
5) our global-state CI (GS-CI).
As the LS-Cen algorithm uses the entire available information

without any approximation, the result of LS-Cen can be regarded
as the optimal performance. We first simulate all methods with
generated data, which not only shows that our algorithm requires
far sparser communication topology to achieve comparable per-
formance of other methods, but also visualizes the boundedness
analysis in Section V. Next, we analyze all methods in a common
multirobot dataset, and show that our algorithm is more resilient
during unfavorable and adverse communication loss than other
algorithms.

A. Simulation

To begin with, we investigate the performances of all five
algorithms with generated data.2 In this simulation, we con-
sider that the orientation estimate is given for N = 5 robots,
as assumed in Section V. For each robot, the velocity input
ui,t is taken uniformly between [−0.09, 0.09] m/s, in which
the velocity input variance in GS-CI can then be calculated.
Fig. 1 specifies the observation graph for the multirobot system.
In terms of the communication graph, for LS algorithms, a

2The code of this section is [Online]. Available: https://github.com/tsangkai/
multirobot_localization.

Fig. 2. Cooperative localization performance with generated data. As for the
communication graph, local-state (LS) algorithms assume all-to-all and perfect
communication, and the global-state (GS) algorithm follows the graph in Fig. 1.
The RMSE plot of LS-Cen and that of LS-BDA are overlapped. For the proposed
GS-CI, robot 1 has bounded covariance matrix, as suggested by Proposition 1.

fully connected communication graph is inherently required and
therefore communication after each relative observation step is
assumed to be perfect. For the GS algorithm, the communication
is constrained as in Fig. 1, which is far sparser than those
communication graphs for LS algorithms.

To quantify the estimation performance against the ground
truth, we define the root-mean-squared-error (RMSE) of the
entire N robots as

RMSEt =

√∑N
i=1 ‖[p̄i,t]i − pi,t‖2

N

where [p̄i,t]j is the estimate of pi,t by robot j. We also consider
the root-mean-trace-error (RMTE) to capture the uncertainty
evaluated in the algorithm, defined as

RMTEt =

√∑N
i=1 tr([Φi,t]i)

N

where [Φi,t]j denotes the subcovariance matrix of robot j that
relates to the position estimate of robot i at time t. We plot the
result in Fig. 2. In particular, for the GS-CI, we plot both the
RMSE and the RMTE of robot 1 to discuss the boundedness
analysis in Section V.

Based on the RMSE in Fig. 2, the LS-BDA and the proposed
GS-CI show desirable results since their RMSEs remain rela-
tively constant. However, the LS-BDA does not guarantee the
estimation consistency, and achieve this performance with the
fully connected communication graph. Other CI-based methods,
including LS-CI and LS-SCI, have increasing localization error
over time, due to the overly conservative estimation as discussed
in Section II.

Even though the proposed GS-CI shows desirable result, the
required communication graph specified in Fig. 1 is far sparser
in the GS-CI than those of the LS algorithms. Especially, as
the graph G1 is weakly connected, Proposition 1 assures that the
upper boundΨ1,t is bounded, which leads to the boundedness of
Φ1,t. In fact, besides the observation of the landmark, the rest of
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Fig. 3. Averaged RMSE and RMTE at t = 1000 s over 100 communication
graphs. We fix the observation link density to be 0.75. The lower the communica-
tion link density is, the sparser the communication graph becomes. The proposed
GS-CI can provide good localization performance while ensuring the estimation
consistency, even when the underlying communication graph is sparse.

the information of robot 1 comes from the single communication
from robot 3. This simulation thus shows how the observation
and the communication are treated as complementary infor-
mation sources in the proposed algorithm. In addition to the
sparseness of the communication graph, the proposed GS-CI has
the estimates of the entire robot team by design, which facilitates
the cooperative planning within the multirobot system.

In the previous simulation, the underlying communication
graphs for LS algorithm are different from that of the GS
algorithm. Since communication is required in the observation
update for LS algorithms, the communication graph also affects
the observation update. We now investigate the communica-
tion link requirement for all five algorithms. In this setting,
we randomly generate an observation and a communication
graphs, and simulate all five algorithms on the generated graphs.
Each graph is generated by assigning a directional link between
two nodes with a constant probability, or the link density. The
observation updates of the LS algorithms are successful only if
the underlying communication graph exists. While the landmark
observation update depends on the exact system implementation,
we assume that it is unaffected by the communication graph, and
mainly focus on the relative observation update. In particular, the
LS-Cen requires all-to-all communications after the observation
update, and the LS-BDA needs a bidirectional communication
link between the observation pair. As for the LS-CI and LS-SCI,
only unidirectional communication link is sufficient to complete
the relative observation.

We simulate all five algorithms with various communication
link densities, and plot the averaged localization performance
at t = 1000 in Fig. 3 over 100 graphs. Since the LS-Cen re-
quires the all-to-all communication graph, the estimation error
of LS-Cen only significantly drops when the communication link
density exceeds 0.9. In other words, the success of the LS-Cen
depends on a very dense communication graph. The problematic
fusion scheme of LS-SCI becomes obvious when the com-
munication graph becomes dense. Meanwhile, the localization

TABLE I
TIME-AVERAGED RMSE OF UTIAS DATASETS [M]

performance of the LS-CI stays satisfying as the estimation
consistency is maintained. The LS-BDA has the least estimation
error in the simulation. The approximation of the LS-BDA to the
LS-Cen becomes more accurate when the communication graph
is dense. Overall, the proposed GS-CI can provide good local-
ization performance while ensuring the estimation consistency,
even when the underlying communication graph is sparse.

B. Communication Resilience Experiment on the
UTIAS Dataset

To demonstrate the resilience to communication failures of
our algorithm, we use the University of Toronto Institute for
Aerospace Studies (UTIAS) Multi-Robot Cooperative Local-
ization and Mapping dataset [37]. This dataset is a cohesive
collection of odometry and observation data fromN = 5 robots,
together with accurate ground truth data of robot and landmark
positions. This dataset is also widely used across several works
as a common benchmark dataset.

We first test those five algorithms on the entire nine sub-
datasets with all communication available on the first 500 sec.3

Each algorithm estimates both the orientation and the position,
and we mainly consider the position estimation here. We record
the time-averaged RMSEt in Table I for all nine subdatasets. As
expected, the LS-Cen algorithm has the lowest localization error
in the entire nine subdatasets. Overall, the proposed GS-CI has
comparable localization performance compared to the LS-Cen,
which is consistent with the previous simulation.

Among all nine subdatasets in the UTIAS dataset, subdataset
9 is the only one that contains barriers, thus creating a more chal-
lenging scenario with its occasional occlusions in observations.
We therefore select subdataset 9 to demonstrate the communi-
cation resilience in the following. To visualize this subdataset
as well as the localization algorithms, we plot the estimated
trajectories of all five robots in Fig. 4 for a 25 sec window.
We also extend the time window of robot 1 for an additional
125 sec to show a longer trajectory in Fig. 5. Both figures show
that the proposed GS-CI is comparable to the LS-Cen, whose
result is regarded as the best achievable performance in the ideal
scenario.

3The code of this section is [Online]. Available: at https://github.com/
tsangkai/multirobot_localization_utias/tree/master/v3.
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Fig. 4. Trajectories of all five robots with different localization algorithms in
subdataset 9 between 1500 and 1525 s. The communication is assumed to be
available whenever needed. The proposed GS-CI is comparable to the LS-Cen,
whose result is regarded as the best achievable performance.

Fig. 5. Trajectories of robot 1 with different localization algorithms in sub-
dataset 9 between 1500 and 1650 s. The communication is assumed to be
available whenever needed. The proposed GS-CI is comparable to the LS-Cen,
whose result is regarded as the best achievable performance.

To investigate the communication resilience of each algo-
rithm, we consider the scenario where the communication is
blocked from an adverse source, and study the localization
performance dynamics during this period. While different time
windows show similar trends, we plot the time window between
1300 and 1400 s of subdataset 9 in Fig. 6 as an example. During
the entire 100 sec time window, the communication is entirely
blocked from 1340 to 1360 s, while the communication remains
available for the rest of the time. In this 20 s window, which is
marked as shaded area in Fig. 6, the estimation errors of all coop-
erative localization algorithms increase, but the proposed GS-CI
has the lowest slope. In other words, by separating the com-
munication update and the observation update, our algorithm
is less susceptible from the communication unavailability but
continues integrating information from the observation updates.
For LS algorithms, since communication is essential to complete
the some observation updates, the localization performances are
largely impaired in this 20 sec window.

Fig. 6. RMSE with blocked communication from 1340 to 1360 s of subdataset
9. The communication remains available besides the window between 1340 to
1360 s. The proposed GS-CI shows resilience during this 20 s time window by
separating the communication update and the observation update.

We furthermore generalize the previous experiment and con-
sider the effect of the communication link failure probability
on those cooperative localization algorithms. In particular, we
consider the scenario in which all the communication links
between two robots exist, but suffer from failures with a constant
probability ρ. For instance, the number of communications
after the relative observation of LS-BDA is 2. Therefore, with
probability (1− ρ)2, the relative observation update of LS-BDA
can be completed successfully without communication failure.

To emphasize the effects on estimation dynamics, we plot
the 100 s snapshots with ρ = 0.1 and ρ = 0.9 in Fig. 7. The
former case with ρ = 0.1 is close to the ideal case where all
the communication is assumed perfect, while the later case with
ρ = 0.9 is similar to the 20 s window with blocked communi-
cation in Fig. 6. By comparing the two snapshots, the effect of
the communication link failure probability ρ on the coopera-
tive localization algorithms becomes noticeable. For instance,
between 140 and 150 s, all the estimation errors increase with
ρ = 0.9 due to communication failures, but the resilience of
each algorithm differs. Among all LS algorithms, the LS-BDA
shows its estimation accuracy when ρ = 0.1. However, while
the LS-BDA has comparable performance to our GS-CI with
ρ = 0.1, it has overall worse localization performance with
ρ = 0.9. Such comparison substantiates the resilience of our
GS-CI under the communication failure.

To characterize the resilience performance under various sce-
narios, we plot the time-averaged RMSE against the communi-
cation link failure probability ρ on the first 500 sec of subdataset
9 in Fig. 8. In general, the increase of the communication link
failure probability ρ has negative impact on all algorithms, as
the information coming from the communication becomes less
available. However, as the communication failure probability
ρ increases, the LS-Cen and the LS-BDA algorithms suffer
from higher localization error, even though they show superb
localization performance in the ideal cases. On the contrary,
the proposed GS-CI maintains a relatively flat curve as the
communication failure probability ρ increases. As the proposed
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Fig. 7. The RMSE of a 100 s snapshot in subdataset 9 with two different
communication link failure probabilities ρ. As there are more communication
failures, the estimation error is larger with ρ = 0.9 that that with ρ = 0.1 for all
algorithms. However, algorithms are affected differently. For instance, between
140 and 150 s, the proposed GS-CI does not have a significant increase in the
estimation error, and thus shows its resilience.

Fig. 8. Time-averaged RMSE with varying communication link failure prob-
abilities ρ of the first 500 s of subdataset 9. We analyze every 50 s and plot the
three standard deviation error bar for all ten windows. The proposed GS-CI is
only slightly affected by the increase of ρ, and it shows resilience across different
ρ values, especially in unfavorable communication conditions.

GS-CI is only slightly affected by the increase of ρ, it shows
resilience across different ρ values, especially in unfavorable
communication conditions.

VII. CONCLUSION

In this article, we presented a multirobot cooperative local-
ization algorithm that has an explicit communication update and
preserves estimation consistency. By separating the communi-
cation and observation steps, the proposed algorithm naturally

has better resilience to communication failures, which is in-
evitable in real-world scenarios. At the same time, the estimation
consistency is guaranteed by the CI. We also characterized
the boundedness criterion to demonstrate that communication
and observation complementarily provide information in the
proposed algorithm.

The explicit communication in the proposed algorithm not
only enhances its resilience to communication failures, but it
also induces more design flexibility. For example, advanced
scheduling of communication and observation becomes possible
to further improve the localization performance as well as reduce
the overall operation cost. Our initial investigation is summa-
rized in [38], and a thorough investigation will be completed in
the future study.

In a multirobot system, the spatial states of other robots
are often required for high-level goals, for example, coverage
control and cooperative path planning. For algorithms tracking
only LSs, additional communication has to be performed to
acquire such information. As the proposed algorithm already
tracks the state of the entire robot team, it actually provides a
seamless integration for these tasks. Therefore, we are looking
forward to applying our algorithm on cooperative multirobot
systems to applications beyond localization.
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