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Abstract This paper proposes a new cooperative localization algorithm that sepa-
rates communication and observation into independent mechanisms. While existing
algorithms acknowledge observations between robots are crucial in cooperative lo-
calization schemes, communication is considered only an auxiliary role in observa-
tion update but not explicitly stated. However, such algorithms require the commu-
nication to be available whenever needed, and it is difficult to consider the effect of
communication imperfection, which is unavoidable in real systems. We propose the
Global State–Covariance Intersection (GS-CI) multirobot cooperative localization
algorithm that can independently update localization estimates through both obser-
vation and communication steps. We also provide a theoretical upper bound of the
resulting estimation uncertainty based on observation and communication topolo-
gies. Simulations using generated data validates the theoretical analysis, and shows
the comparable performance to the centralized equivalent approach with less com-
munication together with real-world data.

1 Introduction

Localization is one of the most fundamental tasks for mobile robots [18]. In mul-
tirobot systems, robots can observe and communicate with one another to achieve
localization cooperatively, even in uncharted places or GPS-denied environments.
This scheme is called cooperative localization (CL), and is considered a promising
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approach for better autonomy. Among all approaches for CL, we focus on those
based on the extended Kalman filter (EKF) due to its computational efficiency.

The success of CL algorithms primarily lies in tracking the correlations between
robots. If the correlations between robots are underestimated, that is, two estimates
are considered more independent than they really are, the uncertainty in the resulting
localization estimation may be too optimistic. This is exactly the double-counting
problem, or over-convergence problem, which impairs the localization reliability.
Consequently, extensive communication between the distributed robots is required
to track those correlations across all localization estimates.

Besides the communication overheads in these algorithms, there is a more funda-
mental concern: the communication is often implicitly assumed to be perfect after
relative observations. In fact, observation and communication are performed by dif-
ferent hardware modules, and communication failures are unavoidable in real sys-
tems. That is, the availabilities of observation and of communication are not identi-
cal, and under this assumption the observation step is vulnerable to communication
failure.

In this paper, we propose the Global State–Covariance Intersection (GS-CI) mul-
tirobot cooperative localization algorithm that separates communication and obser-
vation as two independent information contributors. As a consequence, the proposed
algorithm needs lower communication cost, and is robust to communication failure.
To avoid tracking the exact interdependency between distributive estimations, we
apply covariance intersection (CI) [1, 5, 16] during the communication update to
get a conservative but consistent result, which guarantees that the computed covari-
ance is always not smaller than the true covariance in a positive-definite sense.

While the framework of the proposed algorithm is similar to the ones discussed
in vehicular technology [9, 13], we furthermore provide the theoretical treatment for
the proposed algorithm. It has been shown in [15] that in a centralized-equivalent
localization algorithm, the covariance will be bounded if at least one landmark are
observed. The verification should also be given for the proposed algorithm, con-
cerning the disagreement of observation and communication topologies, and the
conservative fusion result by CI as well.

The contributions of this paper include:

• The CL algorithm that separates out communications explicitly and also pre-
serves estimation consistency to avoid over-convergence

• An analysis of the boundedness properties of the algorithm with respect to ob-
servation and communication topologies

• Comparisons of our algorithm vs. other state-of-the-art algorithms based on sim-
ulated and measured data demonstrating comparable estimation error with less
communication cost

This paper is organized as follow: Related work is presented in the following
section. We setup the system model in Section 3. The main algorithm is proposed in
Section 4, while the associative topology analysis is given in Section 5. Simulations
are delivered in Section 6, followed by the conclusions of this paper.
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2 Related Work

The benchmark of EKF-CL is established in [17], together with the theoretical anal-
ysis in [15]. The formulation in [17] begins with a strict requirement on the avail-
ability of the local information in each robots, which can only be satisfied in a
centralized system. A distributive version is then designed in the same paper, where
each robot holds its own estimation and correlation parameters regarding rest of
the robots. However, to keep those correlation parameters in each robot updated, the
communication complexity of this algorithm after one relative observation is O(N2),
where N is the number of the robots. The communication complexity is lowered to
O(N) in [11] by introducing the interim master, who is in charge of calculating and
broadcasting the required updating information for the rest of the robots. Following
the same modeling, a partially-decentralized scheme is discussed in [10], mainly to
combat information dropouts in communication failure. However, a central process
unit in charge of information exchange is indispensable in this scheme.

In [3, 14], the communication cost is only O(1) after the relative observation.
In both papers, only the estimation information in the robots involved in relative
observation is utilized, which means that the exact correlation between the fused
estimates is not available but can only be approximate. In other words, the commu-
nication cost is lowered with the cost of estimation accuracy. In [3], CI is applied
to get a conservative but consistent estimation result. While our algorithm applies
CI as well, it outperforms the one proposed in [3] in estimation accuracy since our
algorithm can utilize the correlations of robots not involved in the relative obser-
vation. In [14], the exact correlation between the fused estimates is approximated
without the guarantee of estimation consistency. As mentioned in [14], the approx-
imated covariance in their algorithm may be smaller than the real covariance in
positive-definite sense, which may lead to over-convergence problem. For all the
aforementioned algorithms [17, 3, 14], the communication takes place directly after
relative observation. On the contrary, we separate communication and observation
for the robustness against communication failure.

Similar to the algorithm we propose, the CL algorithm for vehicle networks
stores the estimation for the whole system in each agent, called state exchange
scheme [8, 9, 13]. The main challenge of the state exchange scheme is to avoid over
convergence problem without the knowledge of correlation between state estimates.
In [8, 9], only independent estimates are fused. However, to keep the required inde-
pendence, historical information is discarded if there are new-coming independent
information. The split covariance intersection (SCI) is applied in [13] in information
fusion. One of the main drawbacks of this approach is that SCI is not applicable in
relative observation due to the dependency of the information, as mentioned in [3].
Instead of applying SCI, we will consider CI for generalization without imposing
further requirement. Furthermore, we are the only one that provides theoretical ar-
gument to guarantee the consistency and boundedness of the uncertainty, to the best
of our knowledge.

As for the estimation algorithm, our framework is similar to the diffusion Kalman
filter with CI [6]. In the diffusion step of the original diffusion Kalman filter [4], the
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combination of estimations is based on heuristic convex combination without up-
dating the corresponding covariance matrix. In [6], the diffusion step is replaced by
CI, which guarantees the consistency of the resulting estimation. The major differ-
ence between our algorithm and diffusion-based KF is that we do not implement
incremental update, where the raw measurement data is exchanged and incorpo-
rated. However, whether to exchange state estimates or measurement results or both
should be further investigated concerning the accuracy and efficiency jointly.

3 System Model

We consider a 2D multirobot system indexed by Ω = {1, . . . ,N}, together with sev-
eral landmarks whose locations are known by the robots in advance. Landmarks are
denoted as ∆ , and Ω ∗ = Ω ∪{∆}. The position of robot i at time t is regarded as the
state, denoted as si,t = [xi,t ,yi,t ]

T, where T denotes matrix transpose. The orientation
of robot i at time t is denoted by θi,t , and we do not incorporate θi,t in the estima-
tion state due to the linearization issue [2]. The state of the whole system is denoted
by st = [sT1,t , . . . ,s

T
N,t ]

T. In EKF, each robot i keeps an estimate of st , denoted by ŝi
t ,

together with its covariance Σsi,t .

3.1 Motion Model

The motion model describes the spatial displacement of robots due to odometry
inputs. While the framework is not limited to any specific models, we mainly con-
sider the velocity input vi,t in this paper. Let δ t be the time interval between two
consecutive observation points, the state of robot i at the next time is given by

si,t+1 = fi(si,t ,vi,t) =

[
xi,t + vi,tδ t cos(θi,t)
yi,t + vi,tδ t sin(θi,t)

]
. (1)

3.2 Observation Model

If robot i observes an object j, either a robot or a landmark, the relative position
obtained by robot i is

oi j =CT(θi,t)

([
x j,t
y j,t

]
−
[

xi,t
yi,t

])
= Hoi j st , (2)

where C(θ) is the rotation matrix with argument θ .
Most of the time, the relative positions can not be obtained directly, but they

are general enough to incorporate different kinds of sensing result. The observation
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is often accomplished by distance and bearing sensors. Consequently, the relative
position can also be expressed as

oi j = di j

[
cos(φi j)
sin(φi j)

]
, (3)

based on the relative distance di j and relative bearing φi j.

4 Cooperative Localization Algorithm with Explicit
Communication

As mentioned, the CL algorithm should consist of three parts based on the hardware
module. In this section, we present an algorithm according to these three actions:
motion propagation, observation and communication. Motion propagation and ob-
servation steps are standard EKF updates, but we have to handle the unavailable
odometry inputs of other robots in motion propagation. In communication step, it
is nothing more than a direct application of CI, which will be introduced in the
following.

4.1 Motion Propagation

We consider robot i for example. While the velocity inputs of each robot are uncor-
related, the covariance update of motion propagation is

Σsi,t+1 = Σsi,t +Σqi = Σsi,t +Diag(Σu1 , . . . ,ΣuN ). (4)

The determination of Σu j depends on the velocity inputs v j for all j. For robot
i, the velocity input vi is available, and it is disturbed by a noise nv modeled as
zero-mean Gaussian random variable with variance σ2

nv . By linearizing (1), the error
propagation equation of robot i itself is

s̃i,t+1 ≈
[

x̃i,t
ỹi,t

]
+δ t

[
cos(θi,t) −vi sin(θi,t)
sin(θi,t) vi cos(θi,t)

][
nv
θ̃i,t

]
. (5)

The errors in the orientation estimates θ̃i,t = θi,t − θ̂i,t are modeled by a zero-mean
Gaussian random variable, whose variance σ2

θ̃i,t
= E[θ̃ 2

i,t ] is bounded by σ2
θ̃i

. The
increment of covariance matrix Σui can then be obtained as

Σui = (δ t)2C(θi,t)

[
σ2

nv 0
0 v2

i σ2
θ̃i

]
CT(θi,t). (6)
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The velocity inputs v j, j 6= i, are not available for robot i. Without the exact value,
we than model the input itself as a Gaussian random variable v j, whose variance σ2

v
can be determined by the maximum input value vmax and σ2

nv < σ2
v . While the exact

velocity value is unknown, we can still get upper bound covariance increment by

Σu j = (δ t)2 max(σ2
v ,v

2
maxσ

2
θ̃i
)I2, j 6= i, (7)

where In is the n×n identity matrix.

4.2 Observation

The observation step updates the estimates based on the exteroceptive measurements
oi j, which is standard in EKF procedure. The subscript i is omitted in the following
derivation since the observation update occurs only in the robot itself. Based on (2),
the innovation õi j = oi j− ôi j can be approximated as

õi j ≈ Hoi j s̃+CT(θ̂i)JHi j ŝt− θ̃i +noi j , (8)

to distinguish the estimation error s̃, the orientation estimation error θ̃i, and the

measurement noise noi j , where Hoi j =CT(θi)Hi j and J =

[
0 1
−1 0

]
. If the object j is

a landmark,

Hi j =

02×2 · · · −I2︸︷︷︸
i

· · · 02×2


2×2N

;

while the object is robot j, then

Hi j =

02×2 · · · −I2︸︷︷︸
i

· · · I2︸︷︷︸
j

· · · 02×2


2×2N

.

Furthermore, if the observed relative position is obtained by distance and bearing
sensors as in (3), the errors in observed relative position noi j can be expressed as

noi j =

[
cosφi j −di j sinφi j
sinφi j di j cosφi j

][
d̃i
φ̃i

]
,

with the corresponding covariance Roi j . Then the covariance of innovation õi j

is Σoi j = E[õi jõTi j] = Hoi j Σs,t−HT
oi j

+ Rθi j + Roi j , where Rθi j = Gi jσ
2
θi

GT
i j, Gi j =

CT(θ̂i)JHi j ŝt− .
Robots can observe more than one object at the same time, and the observation

results are then correlated. Therefore, we should process the results in the same
observation step together. We first define the observation topology Oi,t = {Ω ∗,EOi,t}
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as a directed graph with edges (i, j)∈EOi,t where j is the object observed by i at time
t. For simplicity, O∗i,t = { j ∈ Ω ∗|(i, j) ∈ EOi,t} is the index set of objects observed
by robot i, and Oi,t = O∗i,t ∩Ω . The overall observation result can be presented by
the stacked vector

oi = [oi j] j∈O∗i,t
= [oTi j1 , . . . ,o

T
i jk ]

T, j1, . . . , jk ∈ O∗i,t .

By separating state error and the rest terms, the covariance of the innovation õi
is Σoi = HoiΣs,t−HT

oi
+ Σri , where Hoi = [Hoi j ] j∈O∗i,t

. Explicitly, Σri = Giσ
2
θi

GT
i +

Diag(Roi j), where Gi = [Gi j] j∈O∗i,t
.

4.3 Communication

When robot j sends its estimation information, in particular ŝ j and Σs j , to robot i,
robot i can use this information to update its own estimation. However, the cor-
relation between ŝi and ŝ j is not recorded at all. Without knowing the correla-
tion among estimates, the fusion of estimates becomes challenging. In particular,
if one underestimates the correlation between two fused estimates, or the two es-
timates are considered more independent than they really are, one encounter the
over-convergence problem. However, tracking the correlations imposes excessive
communication overhead as in aforementioned algorithms [17, 3, 14]. Here, we ap-
ply CI to fuse two estimates without knowing the correlation between them, and to
guarantee the consistency of estimates.

Definition 1 (Consistent fusion [1]). An estimate z is a Gaussian random vector
with mean E[z] = z̄ and covariance Σz. The pair (ẑ,Σẑ) is called consistent if E[ẑ] = z̄
and Σẑ ≥ Σz.

A consistent estimate can be regarded as another estimate which is mean-preserving
but conservative in terms of covariance matrix.

We can similarly define the the communication topology Ci,t = {Ω ∗,ECi,t} as
a directed graph with edges as ( j, i) ∈ ECi,t where j sends its information to i at
time t. Also, Ci,t = { j ∈Ω |( j, i) ∈ ECi,t} is the index set of the information sources.
By directly applying CI, we have the update equation for robot i when receiving
information from j ∈Ci,t , the index set of the robots sending information to robot i,
as in (13) and (14).

The coefficients {c0,c j, j ∈ Ci,t} are all nonnegative and sum to 1. The deter-
mination of the coefficient is usually based on the minimization of det(Σsi,t+) or
that of tr(Σsi,t+). In implementation, the communication update normally involves
two estimates only, since the inverse of convex combination parameters may lead to
undesirably conservative result once the number of parameters is large.
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Algorithm 1 Global State Covariance Intersection (GS-CI) Multirobot Cooperative
Localization Algorithm

Initialization
Set ŝi

0 and Σsi,0 for robot i.
Motion Propagation

input: odometry input vi,t

ŝi
t+1 = [ fT1 (ŝi

1,t ,E[v1,t ]), . . . , fTi (ŝi
i,t ,vi,t), . . . , fTN (ŝi

N,t ,E[vN,t ])]
T, (9)

Σsi,t+1 = Σsi,t +Diag(Σu1 , . . . ,ΣuN ). (10)

Observation
input: observation result oi

ŝi
t+ = ŝi

t− +Σsi,t−HT
oi

Σ
−1
oi

(oi−Hoi ŝ
i
t− ), (11)

Σsi,t+ = Σsi,t− −Σsi,t−HT
oi

Σ
−1
oi

Hoi Σsi,t− . (12)

Communication
input: ŝ j

t− , Σs j ,t− from robot j ∈Ci,t

ŝi
t+ = Σsi,t+

[
c0Σ

−1
si,t− ŝi

t−+ ∑
j∈Ci,t

c jΣ
−1
s j ,t− ŝ j

t−

]
, (13)

Σ
−1
si,t+ = c0Σ

−1
si,t− + ∑

j∈Ci,t

c jΣ
−1
s j ,t− . (14)

4.4 Summary

The overall proposed algorithm is summarized in Algorithm 1, Global State Co-
variance Intersection (GS-CI) Multirobot Cooperative Localization Algorithm. The
term global state indicates that each robot keeps an estimate on the whole system,
in order to distinguish other algorithms in which each robot only keeps an estimate
on its own state.

5 Topological Analysis of Global State Covariance Intersection
Multirobot Cooperative Localization Algorithm

In EKF setup, the uncertainty of the estimate ŝi is represented by the state covariance
Σsi . While the observation and communication topologies are no longer required to
be identical in the proposed algorithm, together with conservative fusion scheme in
CI, the uncertainty of the proposed algorithm should be guaranteed non-divergent
as a prerequisite for further application, as in [15]. Therefore, we determine the
boundedness criteria for Σsi of the proposed algorithm in this section, and it mainly
depends on the observation and communication topology (Oi,t ,Ci,t). To proceed, we
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use the notation convention that for P > 0 and an index set I, we define [P]I as the
submatrix of the index set I.

We consider a time-slotted scenario for theoretical analysis. In each time slot,
every robot executes motion propagation, observation and communication in Algo-
rithm 1 consecutively. We assume that the observation topology Oi and communi-
cation configuration Ci are time-invariant for each robot. The parameters in convex
combination are also constant w.r.t. time. We then obtain the covariance update in
each time slot as

Σsi,t+1 =

[
c0Σ

−1
si,t + c0HT

oi
Σ
−1
ri

Hoi + ∑
j∈Ci

c jΣ
−1
s j ,t

]−1

+Σqi . (15)

With the definition Hi = [Hi j] j∈O∗i
, it follows that Hoi = ΞT(θ̂i)Hi, Ξ(θ̂i) = IN ⊗

C(θ̂i), where ⊗ stands for Kronecker multiplication. The update equation (16) can
then be rewritten as

Σsi,t+1 =

[
c0Σ

−1
si,t + c0HT

i Ξ(θ̂i)Σ
−1
ri

Ξ
T(θ̂i)Hi + ∑

j∈Ci

c jΣ
−1
s j ,t

]−1

+Σqi . (16)

We can find the covariance bound of the error in observation and in motion prop-
agation, Σr and Σq respectively, such that Σr ≥ ΞTΣriΞ and Σq ≥ Σqi by some fairly
common physical constraints. The detail can be found in [15]. By substituting the
corresponding terms in (16), we can find another sequence Πsi,t with recursion

Πsi,t+1 =

[
c0Π

−1
si,t + c0HT

i Σ
−1
r Hi + ∑

j∈Ci

c jΠ
−1
s j ,t

]−1

+Σq. (17)

such that Πsi,t ≥ Σsi,t for all t with the same initial condition Πsi,0 = Σsi,0. Further-
more, in (17) every term besides Πsi,t is constant and independent of the state of the
system.

Proposition 1. If ∆ ∈O∗i , then [Πsi,t ]Oi is bounded with positive definite initial con-
dition.

Proof. We first rearrange the order in Πsi,t+1 to pick i as the first, followed by other
terms in Oi, while the rest are all indices not in Oi. Thus, [Πsi,t+1]Oi is now the
upper-left diagonal submatrix of Πsi,t+1.

In fact, the elements in HT
i Σ−1

r Hi are zero outside Oi. Explicitly,

[HT
i Σ
−1
r Hi]Oi =

[
n −1Tn−1

−1n−1 In−1

]
⊗Σ

−1
r ,

where n = |Oi|. With the special structure, the matrix is nonsingular, with the inver-
sion

R = [HT
i Σ
−1
r Hi]Oi

−1
=

(
1n1Tn +

[
0 0
0 In−1

])
⊗Σr.
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By dropping positive definite ∑ j∈Ci c jΠ
−1
s j ,t in the inversion, we have

Πt+1 ≤
[
c0Π

−1
t + c0HT

i Σ
−1
r Hi

]−1
+Σq. (18)

Applying Lemma 1 in Appendix, the upper-left diagonal term in the inversion sat-
isfies

c0[Π
−1
t +HT

i Σ
−1
r Hi]Oi = c0[Π

−1
t ]Oi + c0[HT

i Σ
−1
r Hi]Oi

≥ c0[Πt ]Oi
−1 + c0R−1.

We can choose B = [c0Π
−1
t ](Oi)C

, then by Lemma 2

c0Π
−1
t + c0HT

i Σ
−1
r Hi ≥

1
2
Diag

(
c0[Πt ]Oi

−1 + c0R−1,B
)
.

The original recursion can then be bounded by

Πt+1 ≤ 2Diag
([

c0[Πt ]Oi
−1 + c0R−1

]−1
,B−1

)
+Σq,

which implies the solution Pt of the recursion

Pt+1 = 2
[
c0P−1

t + c0R−1]−1
+[Σq]Oi

=
2
c0

[
Pt −Pt(R+Pt)

−1Pt
]
+[Σq]Oi

is always larger than [Πt ]Oi , and Pt converges by [7, Ch. 14.5].

Proposition 1 indicates that whenever one robot observes a landmark, the error
in its estimates of those observed robot together with that of the robot itself will be
bounded.

Proposition 2. Suppose that ∆ ∈O∗i ∪O∗j and O∗i ∩O∗j 6= /0. If j∈Ci, then [Πsi,t ]Oi∪O j

will be bounded given positive definite initial condition.

Proof. By dropping the communication terms other than robot j in (17), we have

Πsi,t+1 ≤
[
c0Π

−1
si,t + c0HT

i Σ
−1
q Hi + c jΠ

−1
s j ,t

]−1
+Σu. (19)

If ∆ ∈ O∗i and ∆ ∈ O∗j , we can easily obtain the conclusion from Proposition 1 and
Lemma 2. Therefore, we only consider that ∆ lies in one set.

Given ∆ ∈ O∗j and ∆ /∈ O∗i , we now consider a submatrix of Πsi,t with index in
Oi∪O j. From Proposition 1, we know that [Πs j ,t ]O j is bounded, then so is [Πsi,t ]O j .
To find the bound for [Πsi,t ]Oi , we first note that with n = |Oi|,

[HT
i Σ
−1
r Hi]Oi =

[
n −1Tn
−1n In

]
⊗Σ

−1
r ,
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which is singular. We then find one overlapping index k ∈ Oi ∩O j, and [Πsi,t ]{k}
is bounded since k ∈ O j. By deleting the row and the column associated with k,
[HT

i Σ−1
r Hi]Oi\{k} is now nonsingular, which leads to the boundedness of [Πsi,t ]Oi\{k}.

By Lemma 2, the conclusion follows.
The case ∆ ∈ O∗i and ∆ /∈ O∗j can be proved in the similar way by replacing the

communication term Πs j ,t in (19) with the covariance update equation of j.

Proposition 2 can be easily extended to [Πsi,t ]Oi
⋃

j∈Ci
O j , if ∆ ∈ O∗i

⋃
j∈Ci

O∗j and
O∗i ∩O∗j 6= /0 for every pair of robots.

We can restate Propositions 1 and 2 in graph perspective to understand the com-
munication effect on the estimation performance. In a single robot, those indices
with bounded covariance can be regarded as connected to the landmark ∆ in the
graph Oi, according to Proposition 1. Considering the incoming communication in-
formation in Proposition 2, the bounded indices are those weakly connected to ∆ in
the graph (Ω ∗,

⋃
j∈Ci∪{i}EO j), regardless of edge direction.

In fact, this is not all the indices having bounded covariance, since robot j ∈Ci
can also receive other incoming information. We define a graph Ti for each robot
i ∈Ω by

Ti =

(
Ω
∗,EOi ∪

(⋃
j∈Ci

ET j

))
, (20)

⋃
i∈Ω

ET j =
⋃
i∈Ω

EO j . (21)

Ti can be regarded as the collective information obtained by robot i from observa-
tion and communication. To be more precise, an edge in Ti represents an observa-
tion relationship, either direct or received from other robots. However, the equation
(20) has a trivial solution in which all Ti is fully-connected. We have to impose one
more constraint to avoid such case. The additional equation (21) states that the com-
munication can not invent new observation. Therefore, the total observation pairs in
all Ti should be the same as those in all Oi. For simplicity, we define Ti to be the set
of robots weakly connected to ∆ in Ti.

Proposition 3. [Πsi,t ]{ j} is bounded given positive definite initial condition if and
only if j ∈ Ti.

Proof. If j ∈ Ti, we can arrive the conclusion by the direct application of Proposi-
tions 1 and 2. For the inverse statement, the proof relies on Lemma 3 in [15]. One
can refer to it for details while the complete proof is omitted here.

As Proposition 3 implies, [Σsi,t ]Ti is also bounded.

6 Simulations

In this section, we simulate the proposed algorithm to verify the convergent analysis
as well as to compare the performance with other algorithms, including:
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5

2

3

4

1

communication

landmark
observation

Fig. 1: The observation and communication topologies.

• local state centralized equivalent (LS-Cen) [17, 11]
• local state CI (LS-CI) [3]
• local state block diagonal approximation (LS-BDA) [14]
• global state split CI (GS-SCI) [13]
• proposed global state CI (GS-CI)

In the first part, we use generated data to substantiate the theoretical treatment of
the proposed algorithm. In the second part, we apply dataset collected in real-world
experimental setup to investigate the localization performance for the whole system.

6.1 Generated Data

Table 1: Number of communication per slot with generated data.

Algorithms Number of Communication
LS-Cen 23
LS-CI 6
LS-BDA 6
GS-SCI 2
GS-CI 2

We simulate a system with N = 5 robots to verify the main propositions of this
paper. Robots are moving in a circle with radius 25 m. The velocity input is take uni-
formly between [−0.25,0.25] m/s, with σnv = 0.0125 m/s and σv = 0.25 m/s. The
variances of observation are taken as σnd = 0.1 m and σnφ

= 2 degree. For LS algo-
rithms, only observation topology is considered as in Fig. 1, and the communication
topology is implicitly assumed fully connected, which means that the communica-
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Fig. 2: Simulation result of generated data.

tion after relative observation is assumed perfect. For GS algorithms that separates
communication and observation, both topologies follow Fig. 1.

We focus on the estimation in robot 1 and consider two error performance met-
rics. The estimation error is given by

√
||ŝ1− s||2/N, which indicates the error

comparing to the ground truth. On the other hand, the trace error is defined as√
tr(Σs1)/N, which signifies the convergence of the covariance matrix in EKF.
Based on the simulation result in Fig. 2, LS-CI and GS-SCI are divergent in

terms of estimation error, since these two algorithms have no investigation on the
boundedness of state estimation covariance matrices. The rest can lead to reasonable
estimation results around 0.05 m in estimation error, but the communication cost of
each algorithm varies from 23 for LS-Cen to 2 for the proposed GS-CI, as in Table
1. In other words, the proposed GS-CI achieves comparable accuracy with far less
communication. The trace error of GS-CI also substantiates the analysis in Section
5: T1 = Ω , and Σŝ1 is therefore bounded as a result according to Proposition 3.

6.2 Real-World Data

We use UTIAS Multi-Robot Cooperative Localization and Mapping Dataset [12] to
compare the performance of algorithms. The UTIAS dataset is a 2D indoor dataset
collection consists of 9 individual datasets, and each dataset contains odometry and
measurement data from 5 robots, as well as accurate position groundtruth data. We
have plotted dataset 6, while the results of all datasets have no significant difference.
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Fig. 3: Simulation result of UTIAS dataset.

In this simulation, we implement a centralized localization as in [17] as a perfor-
mance benchmark, and focus on the topology constraints on LS and GS algorithms.
Specifically, we set that only robots 1,2,3 can observe landmarks, and the commu-
nication only takes place between robots 1,2,3 and 4,5 for all algorithms of interest.
In other words, robots 4,5 can only rely on relative observation and communication
for localization. To mitigate linearization error, we use orientation data from ground
truth. The parameters of propagation and observation errors in the algorithms follow
the previous simulation.

Instead of concentrating on the behavior of a single robot as in the previous part,
we consider the overall localization performance of all N = 5 robots. Two metrics
are applied to present the estimation error: the root mean square error (RMSE) is

defined as RMSE =
√

∑
N
i=1 ||ŝi

i− si||2/N, and RMT E =
√

∑
N
i=1 tr([Σsi ]i)/N as the

definition of root mean trace error (RMTE).
Since only robots 1,2,3 can observe landmarks, only LS-BDA and proposed GS-

CI can localize the rest robots in a distributed sense, where the RMSEs of both algo-
rithms are less than 1 m. However, one should notice that the number of communi-
cation is half in GS-CI than in LS-BDA, where the communication is bi-directional
after relative observation.



Multirobot Cooperative Localization 15

7 Conclusions

In this paper, we propose a cooperative localization algorithm for multirobot system
with explicit communication mechanism. In the proposed algorithm the covariance
intersection is applied in communication update to preserve the consistency of the
estimate. We also give the boundedness criteria on covariance matrix of individual
robot, which heavily depends on the observation and communication topologies.

The work in this paper is inspiring in several perspectives. In most robotic sys-
tems, localization is not the main goal but the underlying requirement for high-level
tasks, exploration or self-driving for example. While the proposed algorithm has
actions corresponding to the hardware mechanism, one can relate the underlying
physical actions to the performance of the targeted tasks relied on localization for
further optimization. In addition, while the estimation is one of the fundamental
problem in robotics, the estimation scheme used in this paper can be applied to other
distributive estimation scenarios beyond localization, such as SLAM problems.

Appendix: Auxiliary Lemmas

Lemma 1. For P > 0 and the index set I, we have [P−1]I > [P]I
−1.

Proof. For convenience, we partition P into blocks where the upper-left submatrix

is exactly [P]I . We denote A = [P]I for simplicity, which gives P =

[
A B

BT C

]
. By

matrix inversion lemma, we have

P−1 =

[
A−1 +A−1B(C−BTA−1B)−1BTA−1 −A−1B(C−BTA−1B)−1

−(C−BTA−1B)−1BTA−1 (C−BTA−1B)−1

]
.

By assumption, P−1 > 0, and thus the diagonal submatrix (C−BTA−1B)−1 > 0. In
conclusion, we arrive [P−1]I = A−1+A−1B(C−BTA−1B)−1BTA−1 > A−1 = [P]−1

I .

Lemma 2. Suppose that P > 0 and P =

[
Am×m B

BT Cn×n

]
, then P < P′ =

[ 1
c A 0
0 1

1−cC

]
for c ∈ (0,1).

Proof. Consider a nonzero vector vT = [(1− c)xT, cyT] where x ∈ Rm and y ∈ Rn.
Since P > 0, vTPv > 0, or

(1− c)2xTAx+ c2yTCy+ c(1− c)yTBTx+ c(1− c)xTBy > 0.

For arbitrary uT = [xT, yT], we then know that

Q =

[
(1− c)2A c(1− c)B

c(1− c)BT c2C

]
> 0.
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The result follows by P′−P = 1
c(1−c)JQJ > 0, where J = Diag(Im,−In).
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