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Abstract— Mechanical logic is a class of dynamic electrome-
chanical mechanisms which leverages carefully designed me-
chanical structures to generate programmed control actions
from a constant electrical power supply; thus, it can be
employed as a control method for fully printable autonomous
robots. Composed of a bistable buckled beam driven by
conductive super-coiled polymer (CSCP) actuators, this type
of electromechanical system features non-trivial relationships
between its design parameters and resulting behavioral char-
acteristics. In this paper we present an efficient method to
rapidly design mechanical logic structures from desired be-
havioral specifications. We describe this dynamic system with a
simplified, quasi-static model, whose validity is verified by time
constant comparison. An analytical formula of the mechanical
logic’s behavioral characteristics, i.e. its oscillation period, is
then derived as a simplified expression of the design parameters.
Based on this expression, we formulate the design of mechanical
logic from behavioral specifications into an optimization prob-
lem that maximizes the robustness to manufacturing tolerances,
as demonstrated by an example case study.

I. INTRODUCTION

Origami-inspired printable robots have been created to
achieve inexpensive and rapid prototyping [1]; these robots
are manufactured with cut-and-fold techniques, which allow
designers to build complex 3D objects from 2D materials.
Intensive efforts have been made to develop design tools [2],
[3] and fabrication approaches [4], [S] for printable robots;
however, their control methods are rarely investigated [6].
Recently, a new fully printable control strategy—mechanical
logic—was invented [7]; we use one of its prototypes (Fig. 1)
as our target of analysis in this paper. This mechanical logic
incorporates a bistable mechanism that functions as a digital
mechanical switch, along with CSCP actuators [8] that are
composed of versatile conductive thread [9], [10] and func-
tion as the time delay relay. Under an electrical current, the
actuators generate resistive heating to induce a temperature
change, which transforms into mechanical energy through
axial contraction. The actuators are connected to a bistable
buckled beam, inducing its snap-through motions. Powered
by a constant electrical energy source, this mechanism can
autonomously sequence electrical actuation control signals.
This mechanical logic is particularly noteworthy because
it is inexpensive and easy-to-fabricate, highly apropos to
printable robotics. While [7] is a preliminary investigation
of mechanical logic, in this work we provide a mathematical
description of this device to facilitate its design.
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Fig. 1. Mechanical logic. (a) A prototype of the proposed mechanical logic
(110 x40 x 4mm,, 1.75g) [7]. (b) The mechanism of mechanical logic. Two
loops are connected and disconnected alternatively when the bistable beam
switches between the two different stable states, inducing current oscillation.

The basic configuration of this mechanical logic can be
abstracted as a bistable mechanism driven by an actuator,
which is found in many other processes and applications
[11]-[15]; thus, this work’s analysis can be extended to these
other systems. The construction of such complex dynamic
systems is usually bottlenecked by the design process, which
involves numerous iterations of computationally expensive
analysis. In order to efficiently customize and explore the
functionality of this class of integrated mechanism in a rapid
prototyping context, a systematic design method needs to
be built. Bruch et al. [11] developed a model-based method
to design pre-stressed buckled beams with specified snap-
through characteristics. Gao et al. [16] also proposed a
method for designing and fabricating bistable mechanisms
with required snap-through behaviors. These studies utilized
data-driven methods that required extensive computation. In
this paper, we present an efficient formulation of mechan-
ical logic design from behavioral specification as a low-
complexity optimization problem.

Our design method is based on a quasi-static assumption
that the mechanical logic’s electrothermal subsystem (i.e.
the actuators) features a much larger characteristic time
constant compared to its mechanical subsystem (i.e. the
bistable beam); thus, the behavior of the integrated system
is dominated by the dynamics of the actuators. Under this
assumption, we develop an analytical expression of the
oscillation period of this mechanism based on our previous
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work [17] on the analytical modeling of bistable buckled
beams, which make up one subsystem of mechanical logic.
With this analytical expression, we eventually transform
the design of mechanical logic with a specified oscillation
period into a set of constraints on the design parameters.
To determine a specific parameter assignment, we can apply
these constraints to an optimization criterion. In this work,
we choose to maximize the robustness of the resulting design
to manufacturing tolerances. As inevitable errors lead to
inaccuracy in the realization of the design, we seek to
minimize the resulting offset in the specified behavioral
parameter after fabrication. This optimization-based method
for the rapid design of mechanical logic is demonstrated with
a case study. To summarize, our contributions include:

« a validated quasi-static modeling approach that charac-
terizes a dynamic electromechanical system composed
of a bistable beam driven by linear actuators;

« a computationally tractable analytical formula for the
oscillation period, a behavioral characteristic of me-
chanical logic;

« an optimization formulation to rapidly design mechani-
cal logic with desired high-level behavioral parameters
while maximizing the robustness of design; and

« a case study that demonstrates this rapid design method.

The remainder of this paper is organized as follows:

mechanical logic is introduced in Section II; the quasi-static
model is derived and validated with FEA methods in Section
IIT; the rapid design method and the formulated optimization
problem are demonstrated with a case study in Section IV;
and we end with some conclusions in Section V.

II. BACKGROUND

Fig. 1 demonstrates one prototype of mechanical logic,
which will be used as the target of our analysis.

A. Description of the System

As shown in Fig. 1, this mechanical logic is composed
of a bistable buckled beam and two CSCP actuators. One
end of each actuator is attached to the bistable beam and the
other end is fixed on the frame. The beam functions as a
double-pole, single-throw switch for both Loop A and Loop
B in opposite phases. The actuators serve two functions,
one of which is to complete the circuitry, while the other
is to drive the snap-through motion of the beam [7]. If
the force generated by the actuator exceeds the activation
force required by the bistable mechanism, a snap-through
motion of the bistable mechanism is guaranteed. Under this
circumstance, once power is supplied, this mechanical logic
starts to oscillate, similar to an electrical oscillator.

B. Model of Mechanical Logic

The symmetric structure and periodic motion of mechan-
ical logic allow us to only consider its behavior within one
single snap-through motion, as shown in Fig. 2. In this paper,
the bistable mechanism is a clamped-clamped elastic buckled
beam which is initially straight, and its behavior is described
with a PDE [18]. The actuator is characterized with a thermo-
electric-mechanical model [8].
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Fig. 2. A simplified model of mechanical logic. The actuation force
F(z,w,t) from the actuator is applied at a specific point C with an initial
displacement wy. The x-axis represents the line connecting the two ends
(i.e. point A and B) of the beam, while the w-axis is set perpendicular to
the x-axis at the left end (i.e. point A) of the beam.

1) Bistable Beam: The length, width, and thickness of
the beam are denoted as Ly, b, and h, respectively. The
span of beam after buckling is denoted as L; the difference
between the original length and the span is denoted as dj.
The ratio i = (zc—xa)/(xp —x4) characterizes the position
at which a point force F' is applied. Assuming the Euler-
Bernoulli beam model, the non-linear PDE that describes
the displacement w(x,t) of the beam is as follows [18]:

O*w 0%w EAdJ*w 8w 2
El ox2 2L 8962/ du

(1)
+m 8t2 —l—ca = F(z,w,t)
w©0,) = 2206 =0, w(L,t) = 221, =0
Wrise 2w

w(z,0) = wo(x) = 5 [1— cos( T )]

where m, E, ¢, P, I (I = bh®/12) and A (A = bh)
refer to the mass per unit length, Young’s modulus, viscous
damping coefficient, axial loading, second moment, and
cross-sectional area of the beam, respectively. wq(z) refers
to the initial displacement of the beam, while wy refers to
the initial rise of the beam’s midpoint.

2) CSCP Actuator: The thermo-electric-mechanical
model of the actuator is as follows [8]:

F,=k(zy — zo) + bay + cr(T — T) 3)

where F'y, x, and z are the generated force, the loaded
and unloaded length of the actuator, and k, b, are the mean
stiffness and mean damping of the actuator, respectively. T’
is the temperature of the actuator, 7} is the room temperature
(i.e. 25°C), and cr is the mean slope that compensates
the temperature rise. In order to simplify our model, we
ignore the term b, %, as the effect of damping is considered
negligible. The temperature rise of the actuator is described
with Eq. 4, as derived from Yip’s work [8]:

U? oy
AR(l_e “th )+To “4)

where ) is the absolute thermal conductivity of the actuator
in the ambient environment, while Cy;, and R refer to its
thermal mass and resistance, respectively. The voltage U
across the actuator is assumed constant in this work. The

T(t) =
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relationships between some of the aforementioned parame-
ters of the actuator and its length x( are as follows:

71
k=—, Cin =220, A = 7320, R =420 &)

0
where 71, 72, 3, and 4 are associated with the environment,
experimental setup, and properties of the actuator material.

III. QUASI-STATIC APPROXIMATION FRAMEWORK

Here the dynamic model of mechanical logic is simplified
under a quasi-static assumption. Ultimately an analytical
formula of mechanical logic’s oscillation period is derived.

A. Quasi-Static Assumption

To simplify our model, we make a quasi-static assumption
that the electrothermal subsystem of mechanical logic fea-
tures a significantly larger characteristic time constant than
the mechanical subsystem. Thus, in response to the force
generated by the actuator, the bistable beam is able to achieve
equilibrium instantly. Therefor, the dynamics of the actuator
dictates the behavior of the entire system. This quasi-static
assumption is verified with FEA simulations. Moreover, we
assume that the bistable beam settles instantly after snap-
through motion, since it will immediately rest on a flexible
contact pad with high damping [7].

B. Quasi-Static Assumption Verification

To validate our assumption, the time constants of both
subsystems are evaluated and compared. The time constant
of the mechanical subsystem (underdamped) is estimated as
Tm = 7/(wn/1 — ¢?) [19], where w, and ( refer to the
natural frequency and damping ratio of the system. In this
work, we adopt the first-order natural frequency to calculate
the time constant 7,. The time constant of the electrothermal
subsystem, on the other hand, is given as 7 = Cyp/A
[8]. To obtain the natural frequency w, of the mechanical
subsystem and explore the relationships between w, and
design parameters, several FEA models are built, with their
design parameters listed in Table I. Specifically, Case 1 is
used as the example to demonstrate the verification process.

1) FEA Model: The FEA model of the simplified me-
chanical subsystem is built with ABAQUS 2017, as shown
in Fig.3(a). Both ends of the beam are fixed after precom-
pression (dg = 0.6 mm). One end of the actuator is connected
to the beam at the location y = 0.43 and the other end is fixed
at a position that makes the actuator initially stress-free. The
equivalent Young’s modulus of the actuator is given by the
equation £ = kL/A. In the FEA model, the element Beam
B21H is adopted for both the beam and the actuator.

2) Time Constant Comparison: The natural frequency
corresponding to the first mode shape of the bistable beam in
Case 1 is 706.3 Hz (Fig. 3(b)). Thus, with ¢ approximated as
0.5, T, is calculated as 5.7x 107 s. Meanwhile, with C;, and
A measured as 0.453 Ws/°C and 0.249 W/°C, respectively,
Ter can be calculated as 1.8 s. Since C, and A both are
proportional to the length of the actuator, 7¢ is constant.
The natural frequency of the mechanical subsystem is highly
insensitive to relevant design parameters. As shown in Case

(a) Buckled beam (®)
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Fig. 3. FEA simulation (Case 1 in Table I). (a) FEA model. The beam is
double-clamped and buckled under axial precompression. One end of the
actuator is fixed and the other one is connected with the beam. (b) The first
mode shape of the bistable beam with the corresponding natural frequency
706.30 Hz. The dimensions of the figure are adjusted for better presentation.

2-4 where we assign extreme values to different parameters,
the resulting natural frequency is not significantly influenced
by these changes (corresponding FEA simulation results are
not shown since these cases have rather similar mode shapes
to Case 1). Thus, within our range of consideration, the
time constant of the electrothermal subsystem is always
significantly larger than that of the mechanical subsystem.

TABLE I
A TYPICAL SET OF PARAMETERS OF A MECHANICAL LOGIC.

Parameters Unit Casel Case2 Case3  Cased
Bistable beam :

Length (Lg) mm 14.9 14.9 14.9 14.9
Width (b) mm 3.0 1.0 3.0 3.0
Thickness (h) mm 0.132  0.132 0.05 0.132
Precompression (dy) mm 0.6 0.6 0.6 0.05

Young’s modulus (E) GPa 3.0 3.0 3.0 3.0
Density (p) g/cm3 1.38 1.38 1.38 1.38
Poisson’s ratio (v) 1 0.50 0.50 0.50 0.50

CSCP actuator :

Length (z) mm 50.0 50.0 50.0 50.0
Diameter (D) mm 0.8 0.8 0.8 0.8
Young’s modulus (E)) MPa 18.6 18.6 18.6 18.6
Density (p) g/em® 115 1.15 1.15 1.15
Poisson’s ratio (v) 1 0.50 0.50 0.50 0.50
Natural Freq.(w) Hz 706.3 706.3 574.6 706.3

C. A Reduced Model of Mechanical Logic

Under the quasi-static assumption, instead of solving Eq.
1 for w(z,t), we perform time-stepping and solve for the
beam’s displacement at any time point in the actuation
process, assuming that the beam reaches a static equilibrium.
Thus, we can eliminate the time derivative terms in Eq. 1 and
combine it with Eq. 3 with the damping term ignored. The
resulting ODE describes the bistable beam’s displacement at
a specific time point ¢;, as shown in Eq. 6 and Eq. 7.

dw, Pw;  BAdPw; (Y dw;
Bl de? 2L da? / () (6)
= Fé(xz — plL)
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F= —CT[T(ti) — To} — k[wl(uL) — wo(,uL)} (7)

In Eq. 6, wi(x) denotes the displacement of the bistable
beam at time ¢; and satisfies the boundary conditions in Eq.
2. We transform the point force applied on the beam at the
position x = pL into a distributive load with an equivalent
actuation effect, utilizing the Dirac delta function. In Eq. 7,
F' is regarded as negative because it assumes the negative
direction, as shown in Fig. 2. The magnitude of this point
force at time ¢; is also given by Eq. 7. This boundary value
problem can be solved using the Galerkin method [20].

D. Analytical Expression of the Oscillation Period

As we assign different values to F' in Eq. 6 and study the
beam’s corresponding equilibrium displacement at x = pL,
we obtain a force-displacement curve of the bistable beam, as
represented by the blue curve in Fig. 4. Also, Eq. 7 indicates
a linear relationship between F' and the difference between
the loaded and unloaded length of the actuator at a given
time point. Since the actuator is attached to the beam, this
length difference is reflected by the beam’s displacement
at x = pL. Therefore, at any time point, there is a linear
relationship between F' and w(uL), as demonstrated by the
straight lines in Fig. 4. Thus the equilibrium displacement of

A
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Fig. 4. The mechanism of the decoupled model of mechanical logic.
Blue profiles are the force-displacement curves of the bistable buckled beam
under off-center actuation; Straight lines are the force-displacement curves
of the CSCP actuator at different temperature.

the bistable mechanism at x = pL at time ¢; is characterized
by the intersection of the invariant force-displacement curve
of the bistable beam and the linear curve F' — w;(uL) that
characterizes the force generated by the actuator at time ¢;. At
the beginning (¢t = ), the linear curve is represented by the
black line in Fig. 4 and intersects with the force-displacement
curve at (wy, 0), where wy, refers to the initial displacement
of the actuation position (wo(uL) = wy). As time elapses,
the temperature of the actuator increases and the F'—wj;(uL)
curve moves downward, with the intersection of the two
curves moving toward the switching point (wey, Fier).

This representation of the equilibrium displacement of the
bistable mechanism thus allows us to directly calculate the
time needed for the bistable beam to reach the snap-through
point, which, in this work, is assumed to be the switching
point (we, Fr). In other words, we assume that the linear
curve given by Eq. 7 at the snap-through time ts,,, passes

through the switching point. Thus, s, satisfies the equation:
Fy=—cr [T(tsnap) - TO] - k[wcr - wtr] (8)

Combining Eq. 4 and Eq. 8, with the fact that the mechan-
ical logic’s oscillation period T’ is twice fsap, We have:
Cn AR
T,=-2 3 In[l e (
The beam’s snap-through characteristics, wy, wer, and F'g;,
are extracted from its force-displacement curve. Studying
Eq. 6 by changing the magnitude of F' and calculating the
corresponding displacement of the beam is one possible way
to obtain the force-displacement curve, and curves generated
with other methods (e.g. experiments) also apply, as long as
the parameters wy, wer, and F; can be evaluated from these
curves. In this paper, we utilize the results from our previous
work, where we derived analytical formulas of wy., w,, and
F'; as expressions of the design parameters of the beam [17]:

kwe — kwer — Fcr)] &)

Wy = dol- [1— cos(2mp)]
7r
EI/dyL -
Wer = 2v/do Lt (p), Fe = — 0% F(p)

L3
w(p) = —7.155u" + 2.8721% 4 4.339u2 — 1.5381 + 0.0832
F(p) = 50588u* — 69285.° + 366062 — 8894.51 + 914.9
with u € [0.35,0.5]

(10)

Eq. 9 and Eq. 10 combined yield an analytical formula of
the mechanical logic’s oscillation period as an expression of
its design parameters. It is worth noting that determining the
snap-through point of bistable beams connected to actuators
is a challenge by itself. In this paper, we assume that the
snap-through point coincides with the switching point of the
beam for convenience; there might be other possible loca-
tions of the snap-through point, which we may investigate
in the future to improve our model.

IV. DESIGN METHOD AND EVALUATION

Our analytical model of the mechanical logic’s oscillation
period effectively guides the design of the system when a
desired oscillation period is specified. Here we demonstrate
one possible optimization algorithm that finds the set of de-
sign parameters that allows the mechanical logic to oscillate
at a desired period and at the same time, maximizes the
robustness of design and thus improves the manufacturability
of the resulting system. Importantly, users can customize
their own, specific constrained optimization problems, with
different degrees of freedom or parameters to be optimized,
using the scheme to be discussed. The functionality of this
algorithm is further demonstrated with a case study.

A. Optimization Problem Formulation

1) Parameters and Constraints: We consider a mechan-
ical logic with the following predetermined parameters: the
temperature change compensation term cr, the voltage across
the actuator U, as well as the parameters 71, Y2, V3, V4
that characterize the relationships between k, Cy, A, and
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R and the length of the actuator zy, as given in Eq. 5.
Moreover, we assume that some design parameters, namely
the thickness of the beam h, the Young’s modulus £, and
the actuation position p, are predetermined by users. All of
these aforementioned parameters are summarized in Table II.

The remaining design parameters to be optimized include
the width of the beam b, the original length L, the span L,
and the length of the actuator z, all of which are subject to
certain constraints. Constraints on b, Ly, and x are specified
by users, as shown in Table II. Moreover, the analytical
models of the snap-through characteristics in Eq. 10 are
highly accurate if the precompression rate is less than 8%
[17], indicating an implicit constraint on L and L.

More constraints may be imposed on the parameters if the
system has limitations for the critical snap-through force or
critical displacement. For instance, if the system is unable
to provide actuation force that exceeds a certain magnitude,
another constraint on the design parameters may be relevant.

2) Optimization: As different designs of the mechanical
logic may yield the same oscillation period, we choose the
design with the highest robustness. Given the inevitable
fabrication errors that would result in some inaccuracy in
the values of design parameters, we want to minimize the
ultimate error in the oscillation period T'ys.. Fabrication tools
such as laser cutters typically result in inaccuracy in the ge-
ometry of the beam, while manually cutting the actuator may
result in inaccuracy in its length. Thus, the robustness of a set
of design parameters is associated with the partial derivatives
oT,/0b, dT,/0Ly, OT,/0L, and OT,/Oxy when this set
of parameters is adopted. Hence, our optimization problem
minimizes the absolute values of these partial derivatives:

e T
mipize &€
subject to  T'y(b, Lo, L, 29) = Tosc
bmin < p < pmaz

L(r)nzn S LO S nga:r

0< M < 0.08 (1D
=7, S

xg”” <z < xy.

, oT, 9T, 0T, 8Ta>T
with

= T:
g=Vla <6b’8L0’8L’6a:0
2 2 2

— s 2
E= dzag(ebv eLOa €L ezo)

Note that we write T, as a function of b, Ly, L, and
xq for simplicity, but T'; also depends on the predetermined
parameters in Table II. £ contains the weight of each partial
derivatives in the cost function g7 £g. The weights are given
as the estimated fabrication error bounds for b, Ly, L, and
xg, which are dependent on the fabrication methods and
therefore inputted by users. This optimization problem, with
constraints and the weight matrix £ customized by users,
can be solved with fmincon in MATLAB.

B. Case Study

We consider a mechanical logic whose predetermined pa-
rameters are given in Table II. The bistable beam is made of

polyester (PET) sheet, whose thickness and elastic modulus
are 0.132 mm and 3 GPa, respectively. The actuation position
parameter  is chosen as 0.43 and the constraints on the
geometry of the beam and the actuator are given in Table II.
The oscillation period is chosen as 4.0 s. Since the bistable

TABLE I
PARAMETERS AND CONSTANTS IN THE OPTIMIZATION PROBLEM.

Parameter Unit Case Study
Predetermined Parameters :

Mean Stiftness Const () N 9.34
Thermal Mass Const (y;) N/°C 9.06
Thermal Conductivity Const (y3) N/(s-°C) 498
Resistance Const (y4) Q/m 2717.67
Voltage (U) Vv 7.64
Temperature Compensation (cr) N/°C 0.0286
Beam Thickness (h) mm 0.132
Beam Young’s modulus (E) GPa 3.0
Actuation Position (1) 1 0.43
Constraints :

Min Beam Width (b™%7) mm 2.5
Max Beam Width (%) mm 3.5
Min Beam Length (Lg”") mm 12.0
Max Beam Length (L{***) mm 24.0
Min Actuator Length (a:(’)”i") mm 40.0
Max Actuator Length (x***) mm 100.0

beam is folded from a 2D pattern fabricated with a laser
cutter [7], the laser kerf, approximately 0.1 mm wide [21],
may result in inacuracy in b, L, and L. We choose the error
bounds of b, Ly, and L as twice of the width of the laser
kerf. Meanwhile, we choose the error bound of zy as 0.6
mm, as cutting the CSCP actuator manually might involve
larger error. Therefore, the entries in the weight matrix &,
€b, €Ly, €L, and e,,, are chosen as 0.2 x 1073, 0.2 x 1073,
0.2 x 1073, and 0.6 x 1073.

The values of b, Lo, L, and zy given by the optimization
are 2.5 mm, 24.0 mm, 22.1 mm, and 52.8 mm, respectively.
The robustness of this design is tested and compared with the
robustness of another design that yields the same oscillation
period (b = 3.0 mm, Ly = 15.0 mm, L = 14.5 mm, zg
= 64.0 mm). In Table III, Case 1 and Case 6 represent
ideal circumstances where no fabrication error occurs, while
Case 2-5 and Case 7-10 represent those where there are
significant errors in b, Ly, L, and xy. There is an one-to-one
correspondence between these cases, as the errors in these
four parameters are exactly the same in Case 2 and Case 7
and this pattern holds in the other three pairs of test cases.

The small relative error in the oscillation period from Case
2-5 indicates that the parameters suggested by the algorithm
feature high robustness in design. Even when fabrication
errors are highly notable, we can still keep the error in the
oscillation period within +10%. In Case 7-10 (compared to
Case 6), the absolute errors in b, Ly, L, and z are also 0.1
mm, 0.1 mm, 0.1 mm, and 0.3 mm, respectively, but these
errors make the relative error in the oscillation period exceed
30% in multiple cases. Also, each of Case 7-10 has notably
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larger relative error than their corresponding case from 2-
5. These observations indicate that our arbitrary choice of
design parameters has much lower robustness.

Importantly, these robust design parameters are obtained
nearly instantly by running the optimization algorithm on
a typical personal computer, while conventional parameter
exploration would have been extremely time-consuming.

TABLE III
EXAMPLE TEST CASES THAT DEMONSTRATE DESIGN ROBUSTNESS.

Case b Lo L x0 Tosc  Error
mm  mm mm mm S %
1* 2.5 240 221 528 400 O
2 2.4 241 222 531 397 -0.75
Optimized 3 24 241 220 525 426 +6.50
4 2.6 239 220 53.1 413 4325
5 2.6 239 222 525 364 -9.00
6* 3.0 150 145 640 400 O
7 2.9 151 146 643 383 -425
Naive 8 2.9 15.1 144 637 540 +35.0
9 3.1 149 144 643 428 +7.00
10 3.1 149 146 637 265 -33.8

Note: * represents ideal cases while the others refer to cases where there
are significant errors in b, Lo, L, and zo.

V. CONCLUSION

We have proposed a rapid design method for mechanical
logic, a complex dynamic electromechanical system com-
posed of a bistable buckled beam and CSCP actuators. Based
on a quasi-static model, we have developed an analytical
expression for our mechanical logic’s oscillation period.
With this analytical expression, the design of mechanical
logic from desired behavioral specifications is formulated
into a constrained optimization problem, which takes as
input predetermined parameters of the system and, after
performing optimization instantly, outputs a set of design
parameters that allows the mechanical logic to oscillate at the
desired period and maximizes the robustness of the design.

Beyond the scope of the mechanical logic discussed in this
work, our design method may apply to other dynamic elec-
tromechanical systems satisfying the quasi-static assumption.
For instance, we can replace the CSCP actuator with shape
memory alloy (SMA) actuator [22] or replace the bistable
beam with a monostable beam [23]. Given the high simplicity
and flexibility of our method, we believe that our work can
facilitate the modeling, designing, and prototyping of many
complicated dynamic compound systems with similar basic
configurations to that of mechanical logic.
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