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Abstract— We derive the Kullback-Leibler average of von
Mises distributions to fuse circular informations in multi-agent
systems. Similar to the covariance intersection for Gaussian
distributions, the derived fusion protocol does not require
the independence among incoming distributions but maintains
the estimation consistency, if those von Mises distributions
represent estimates. Therefore, this fusion protocol is especially
useful in the distributed estimation problem to avoid the over-
confidence problem. For example, together with von Mises
filters, the derived fusion protocol can estimate the dynamic
circular term in a distributed manner. In addition, we apply this
fusion protocol to determine the consensus of von Mises distri-
butions over a network. Since the fusion protocol can be easily
achieved by calculating the weighted average of the associated
complex numbers, the corresponding convergent conditions of
the consensus algorithm are then elegantly determined.

I. INTRODUCTION

A multi-agent system is comprised of locally interacting
agents equipped with sensing, processing and communication
capabilities. Without a centralized console to coordinate
all agents, the distributed multi-agent system may perform
suboptimally. However, owning to the same reason, such
distributed systems are far more robust and efficient than
the centralized ones, and are applied in various applications
including sensor networks and multi-robot systems.

Even though the algorithms on multi-agent systems have
been studied for a while, most of the works focus on
sensing and processing data in Euclidean space. In realistic
applications, instead, there are a lot of circular data that
have drastically different properties than the Euclidean one.
Directly applying the algorithms for Euclidean data on
circular data leads to consequential inconsistency. Therefore,
the algorithms for circular data need to be designed explicitly
by acknowledging the difference [1], [2].

While the sensing of the circular data can be largely
solved by the von Mises filter [3], the processing and the
communication of circular data in a multi-agent system
are relatively overlooked. In particular, the fusion algorithm
for circular data is essential to combine local informations,
which enables the multi-agent systems to estimate the circu-
lar quantity in a distributed manner. In [4], a fusion algorithm
is proposed for the von Mises distributions of circular
data, but this algorithm requires the independence of the
incoming informations. In fact, tracking the data dependency
in a distributed network is very costly, but ignoring the
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dependency in the estimation scenario inevitably leads to the
over-confidence problem.

In this paper, we derive a fusion method for von Mises
distributions by obtaining its Kullback-Leibler (KL) average
[5]. The exact formulation is already applied for the Gaussian
distribution in Euclidean space, and the result is well-
known as the covariance intersection [6]. The KL average
actually gives a conservative fusion result with respect to
the incoming informations, which guarantees the estimation
consistency and avoids the over-confidence problem [7].
As a result, the derived KL average of von Mises distri-
butions can be applied in multi-agent systems where the
dependency of those von Mises distributions are not known.
For computational consideration, the KL average of von
Mises distribution can be easily calculated as the weighted
average of the associated complex numbers, which provides
an efficient formula to obtain the fusion result.

The proposed KL average for von Mises distributions can
not only be applied on a single agent to fuse the incoming
informations, but can also be implemented in networked
agents to reach a consensus. We furthermore investigate the
conditions of network topology and of weight selection to
reach a consensus. Those conditions are well-studied for the
real-number cases, both in theory [8] and in applications [9],
[10]. Since the derived KL average of von Mises distribution
can be represented in the complex number calculation and
admits a linear form, the previous results in real-number
cases can be directly and elegantly applied in our scenarios.

The contributions of this paper include:
• the fusion protocol of the KL average for von Mises

distributions,
• the conservative fusion of von Mises estimates without

knowing the dependency, and
• the consensus algorithm for von Mises distributions over

a network.
We organize this paper as follows: The KL average and

the general barycenter interpretation will be reviewed in Sec.
II. The main contribution, the KL average of von Mises
distributions, will be derived in Sec. III. In the next section,
the KL average will be applied in a network scenario to
reach a consensus of von Mises distributions. In Sec V, two
simulations are presented to demonstrate the conservative
fusion and the network consensus, respectively. We conclude
this paper is the last section.

II. THE KULLBACK-LEIBLER AVERAGE

In this section, we present the background of the KL aver-
age, which belongs to a more general barycenter formulation.
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To motivate the general barycenter formulation, we begin
with two simple weighted average problems of real vectors
and of circular terms.

For an Euclidean space Rl, the weighted average of points
x1, . . . , xN with weights w1, . . . , wN is the solution of the
minimization problem

min
x∈Rl

N∑
n=1

wn(x− xn)2, (1)

where w1, . . . , wN are positive weights summing to 1. We
can write d(x, x′) = (x − x′)2 as the difference measure
between two points. To extend to circular terms, we can
formulate the similar minimization problem by using the
circular distance

d(θ, θ′) = 1− cos(θ − θ′) (2)

between two circular terms θ and θ′ [11]. To be explicit,
we consider N circular values θ1, . . . , θN , which all lie in
[0, 2π). The weighted average θc is then the solution of the
minimization problem, or

θc = argmin
θ

N∑
n=1

wn (1− cos(θ − θn)) .

It is not difficult to see that

exp(iθc) =

N∑
n=1

wn exp(iθn). (3)

A. KL Average

With a slight abuse of the metric notation, one can
choose the Kullback-Leibler (KL) divergence to quantify the
difference between two distributions p(x) and q(x), with
definition

DKL(p||q) =
∫
p(x) log

p(x)

q(x)
dx. (4)

The corresponding weighted average with KL divergence
for probability density functions p1, . . . , pN and weights
w1, . . . , wN can then be defined as

pc = arg inf
p∈P

N∑
n=1

wnDKL(p||pn), (5)

where P denotes the set of all probability density functions.
The solution is also called the KL average in [5]. Further-
more, the authors of [5] show that pc has an explicit form

pc(x) =

∏N
n=1 [pn(x)]

wn∫ ∏N
n=1 [pn(x)]

wn dx
, (6)

which is exactly the normalized geometric mean of the
density functions p1, . . . , pN . The properties of the geometric
mean of density functions are investigated in [7]. Focusing on
the fusion between two densities, the authors show that the
solution (6) is both conservative and effective in combining
information from dependent sources.

When only the Gaussian distributions are considered, the
solution of the KL average turns out to be identical as the one

of the covariance intersection. The covariance intersection
is first proposed to fuse several Gaussian distributions and
to guarantee the estimation consistency without knowing
the correlations between them [6]. Due to its simplicity
and its consistency, the covariance intersection is applied in
multiagent systems [12] and in robotics [13].

B. Wasserstein Barycenter

The aforementioned minimization problems actually be-
long to a more general barycenter formulation. The concept
of barycenter is introduced in astronomy to find the center
of mass of several orbiting bodies. By generalizing the
orbiting bodies to probability measures, we can define the
barycenter of several probability measures with properly
defined distance metric. One choice of the distance metric
on probability distributions is the Wasserstein distance. The
resulting Wasserstein barycenter is well studied [14], and is
applied in computer graphics [15] and machine learning [16],
[17]. The explicit solution of the Wasserstein barycenter for
Gaussian distributions is given in [18], but the application is
not fully understood yet.

Even though the KL divergence can be interpreted as the
“distance” between two probability distributions, there are
some fundamental differences between the KL divergence
and the Wasserstein distance. For example, the two proba-
bility distributions of the KL divergence should be defined
on the same probability space, while the Wasserstein distance
can be defined on two different probability spaces.

III. THE KL AVERAGE OF VON MISES DISTRIBUTIONS

We now explicitly solve the KL average of von Mises dis-
tribution in this section. The von Mises distribution, denoted
by vM(µ, κ), κ > 0, has probability density function

g(θ;µ, κ) =
1

2πI0(κ)
exp(κ cos(θ − µ)), 0 ≤ θ < 2π,

(7)
where In is the modified Bessel function of the first kind
and order n, which can be defined by

In(κ) =
1

2π

∫ 2π

0

cos(nθ) exp(κ cos θ) dθ. (8)

In (7), µ is the mean direction and κ is known as the
concentration parameter.

Theorem 1. Given N von Mises distributions p1, . . . , pN
with the means µ1, . . . , µN and the concentration parameters
κ1, . . . , κN , together with N positive weights w1, . . . , wN
summing to 1, the barycentric solution of the KL divergence

gc = arg inf
g∈PvM

N∑
n=1

wnDKL(g||gn), (9)

with the mean µc and concentration parameter κc satisfying

κc exp(iµc) =

N∑
n=1

wnκn exp(iµn). (10)

When all incoming concentration parameters κ1, . . . , κN
are equal, the solution of the von Mises consensus (10)

2412



degenerates to that of the simple weighted averaged of the
circular terms (3). Even though the KL average is calculated
over several distributions, Theorem 1 shows that the result
is only the average over the associated complex numbers,
which greatly simplifies the calculation. Moreover, as a KL
average, the von Mises distribution from the solution (10)
is a conservative fusion of the incoming distributions. If
the incoming von Mises distributions are estimations of
a circular value, the proposed fusion scheme guarantees
the estimation consistency, since no information is doubly-
counted during the fusion [7].

Before proving Theorem 1, we need the function A(κ)
defined as

A(κ) =
I1(κ)

I0(κ)
. (11)

We also need the following property of A(κ) to complete
the proof of the main theorem.

Lemma 1. For κ > 0, A(κ) > 0 and A′(κ) > 0.

We provide the proof of this lemma in the appendix.
Proof of Theorem 1: Since the solution of (9) is also a von

Mises distribution, which is characterized by two parameters,
we then define an objective function as

J(µ, κ) =

N∑
n=1

wnDKL (g(µ, κ)||gn)

=

N∑
n=1

wn

(
log

I0(κn)

I0(κ)
+A(κ) [κ− κn cos(µ− µn)]

)
,

where the KL divergence between two von Mises distri-
butions is given in [19]. The parameters µc and κc that
minimize J(µ, κ) are then the mean and the concentration
parameter of the distribution gc, respectively.

Mean: We take the derivative with respect to µ and set to
zero. Interchanging differentiation and integration is allowed
according to the dominated convergence theorem.

∂

∂µ
J(µ, κ) =

N∑
n=1

wnA(κ) [κn sin(µ− µn)] = 0,

where the solution is µc. By sorting out the equation,

sinµc

(
N∑
n=1

wnκn cosµn

)
= cosµc

(
N∑
n=1

wnκn sinµn

)
.

This yields the result of the mean

µc = arg

(
N∑
n=1

wnκn exp(iµn)

)
. (12)

We now check the second derivative

∂2

(∂µ)2
J(µ, κ)

∣∣∣∣
µ=µc

= A(κ)

N∑
n=1

wn [κn cos(µ− µn)]
∣∣∣∣
µ=µc

= A(κ)κc cos(µ− µc)
∣∣∣∣
µ=µc

> 0,

where

κc =

√√√√( N∑
n=1

wnκn cosµn

)2

+

(
N∑
n=1

wnκn sinµn

)2

.

The κc here is only a constant, but we will prove that the
exact κc is the minimizer of (9) in the following.

Concentration parameter: We now take the derivative of
J with respect to κ.

∂

∂κ
J(µ, κ)

∣∣∣∣
µ=µc

= A′(κ)

N∑
n=1

wn [κ− κn cos(µc − µn)]

with the identity

∂

∂κ
I0(κ) = I1(κ).

We set the partial derivative to zero. Since A′(κ) > 0, the
solution κc of the equation follows

κc =

N∑
n=1

wnκn cos(µc − µn)

=

√√√√( N∑
n=1

wnκn cosµn

)2

+

(
N∑
n=1

wnκn sinµn

)2

.

(13)

The second derivative gives

∂2

(∂κ)2
J(µ, κ)

∣∣∣∣
µ=µc,κ=κc

= A′(κc) +A′′(κc)

N∑
n=1

wn [κc − κn cos(µc − µn)]

= A′(κc) > 0.

where the inequality comes from from Lemma 1. By ex-
pressing µc and κc in the complex form, we arrive at (10).

IV. THE VON MISES CONSENSUS OVER A NETWORK

In this section, we apply the KL average algorithm for
von Mises distributions in (10) on a network of agents. We
then show the condition on network topology as well as on
weight selection required for those networked agents to reach
a consensus. In order to characterize the network topology,
we first introduce some graph notations.

A. Network Topology

A directed graph G = (V,EG) is applied to characterize
the information flow over a network. In the graph G, the
vertex set V contains all the nodes, and an edge (k, j) ∈ EG ,
k 6= j, represents that information can be sent from node k to
node j. The neighborhood of node j is defined as NG(j) =
{k|(k, j) ∈ EG}. In other words, the neighborhood of node
j contains all nodes that send its information to node j. The
inclusive neighborhood is defined by N∗G(j) = NG(j)∪{j}.
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B. Consensus over a Network

We can now consider M nodes that form a network, and
use a graph G to describe the information flow among those
nodes. Each node holds a von Mises distribution, and each
node combine the incoming informations from other nodes
by (10). To be specific, we use wjk > 0 to stand for the
weight that node j use for the distribution from node k. By
definition,

∑
k∈N∗G(j)

wjk = 1.
Since Theorem 1 states that the KL average of von Mises

distributions can be calculated by the weighted average of the
corresponding complex numbers, each consensus iteration
over the network can now be represented by the matrix
multiplication. To be explicit, the complex vector

vt =

 v1,t...
vM,t

 =

 κ1,t exp(iµi,t)
...

κM,t exp(iµM,t)

 (14)

can represent the von Mises distributions over the network
at time t, where j-th element of vt represents the von Mises
distribution at node j at time t. We can also put the weights
into a nonnegative matrix W where

[W ]jk =

{
wjk, if k ∈ N∗G(j).
0, otherwise.

(15)

Consequently, each consensus iteration can be expressed as

vt+1 =Wvt. (16)

To discuss the asymptotic behavior of vt, we need to first
characterize that of W t, which is well-studied by the Perron-
Frobenius theorem [8].

Lemma 2 (Perron-Frobenius theorem for stochastic matri-
ces). For an irreducible primitive stochastic matrix P ,

lim
t→∞

P t = 1Mu
T
P , (17)

where uP is the Perron vector of PT.

By definition (15), W is not only a nonnegative matrix
but it is also stochastic, or

1M =W1M ,

where 1M is an all-1 vector of size M . We denote the Perron
vector of WT as uW , and therefore 1TNuW = 1. Based
on the Perron-Frobenius theorem, we can directly have the
following two propositions.

Proposition 1. If W is irreducible and primitive,

lim
t→∞

vj,t = uTW v0. (18)

Since we require the weights in Theorem 1 to be positive,
the irreducibility and the primitivity in Proposition 1 can
be fully determined by the underlying graph G [8]. In other
words, as long as the network topology is given, the condition
of Proposition 1 is determined, regardless of the weight
selection. Proposition 1 states that, even though the proposed
fusion scheme is conservative, with the irreducibility and the

primitivity of the matrix W , the concentration parameters
of all von Mises distributions will not keep decreasing but
converge to the same value. Since the elements of the Perron
vector u are positive and summed to 1, the convergent value
uTW v0 can be considered as the weighted averaged of the
initial vector v0.

As the convergence of the consensus is fully determined
by the network topology, the converged consensus can be
determined by the weight selection.

Definition 1. A M × M matrix P is doubly-stochastic if
1M = P1M and 1M = PT1M .

Proposition 2. If W is irreducible, primitive, and doubly-
stochastic,

lim
t→∞

vj,t =
1

M

M∑
k=1

vk,0. (19)

Proposition 2 states that under those conditions, the distri-
butions of all nodes converge to the same distribution, which
is the average of the initial distributions. In addition to the
conditions from the network topology, Proposition 2 requires
the weight selection to ensure that W is doubly-stochastic.
The condition of doubly-stochastic matrices over a graph is
well-investigated [20]. One of the weight choices to ensure
that W is doubly-stochastic is given by the Metropolis
weights:

wjk =


1

max(|N∗G(j)|,|N∗G(k)|)
, if k ∈ NG(j).

1−
∑
k 6=j wjk, if k = j.

0, otherwise.

(20)

The consensus weight selection is another weight choice that
ensures that W is doubly-stochastic, which is given by

wjk =


ε, if k ∈ NG(j).
1− ε|NG(j)|, if k = j.

0, otherwise.
(21)

For the consensus weights, ε should small enough to ensure
that wjk > 0 for all j, k.

The convergence rate of both propositions is determined
by the second largest eigenvalue of W [8]. The authors in [9]
even optimize the convergence rate to reach the distributed
average. However, such optimization remains difficult to be
achieved in a distributed network. Finally, even though the
theory of both the propositions is well-known in the linear
algebra [8] and in the literature of consensus problems [9],
[10], we are not fusing real numbers but actually von Mises
distributions in this paper.

V. SIMULATION

In this section, we show that the KL average for von
Mises distributions is able to fuse dependent distributions
in the first simulation. We consider two estimators that use
the overlapping observation data, and the direct fusion of
the estimates leads to the over-confidence problem. On the
contrary, the proposed fusion algorithm can avoid the over-
confidence problem, and maintain the estimation consistency.
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Fig. 1. The topology of the fusion between 2 dependent von Mises filters.
S1, S2, and S3 are the sensors that observe θt by (23). E1 and E2 are the
von Mises filters. The von Mises filters E1 and E2 operate the time and the
observation updates for 20 times, then send its own estimate to the fusion
center C for the final fused result. For the KL average fusion, the weights
are fixed as w1 = 0.6 and w2 = 0.4.

In the second simulation, we show that the proposed fusion
protocol can reach the consensus over a distributed network,
and we demonstrate the effect of the weight selection on the
resulting consensus.

A. von Mises Filters with Overlapping Sensors

To demonstrate that the proposed KL average can fuse
dependent distributions, we consider a scenario with 2 es-
timators. These two estimators try to estimate a dynamic
circular value θt that evolves according to

θt = θt−1 + ut−1 + wt−1, (22)

where ut−1 is the input and wt−1 is the process noise
modeled by vM(0, κw). These two estimators do not directly
observe θt, but receive the observation data from distributed
sensors, which observe θt by

ok,t = θt + νk,t, (23)

where ok,t is the observation from sensor k. In (23), νk,t
is the observation noise of sensor k, and is modeled by
vM(0, κν,k). All process noises and observation noises are
independent of the rest of the system.

We consider a system with 2 estimators and 3 sensors, with
the system topology in Fig. 1. We choose a constant input
ut = 0.7 with κw = 7. For the sensor parameters, κν,1 = 3.3,
κν,2 = 4.4, and κν,3 = 2.2. The two estimators E1 and E2
use the von Mises filters to dynamically estimate θt, but
the estimates are dependent since both estimators use the
observation from S2. These two estimators run 20 iterations
of both the time update and the observation update, and then
send their own estimate to the fusion center C.

We compare various fusion protocols at the fusion center
C, including our KL average fusion protocol and the fusion
equation assuming independence from [3], in Fig. 2. As
a benchmark, we also plot the optimal fusion where the
estimator can directly obtain the raw observation data, and
fuse them. However, the optimal fusion is not practical in
distributed networks.

In Fig. 2, the concentration parameter of the independence
fusion is larger than that of the optimal fusion. Therefore,
the independence fusion is definitely over-confident, which

90
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180

210

240
270

0

0.5

1

1.5

2

groundtruth
KL average fusion
independence fusion
optimal fusion
E1
E2

Fig. 2. The density function of von Mises distributions under different
fusion methods. The independence fusion produces over-confident estimates,
since its concentration parameter is larger than that of the optimal fusion. On
the contrary, the KL average fusion gives reasonable estimation without even
knowing the exact independent observation data, which shows its efficiency
in distributed networks.

TABLE I
THE STATISTICS OF THE CONCENTRATION PARAMETERS κ UNDER

DIFFERENT FUSION METHODS OVER 200 TRIALS

Fusion method Mean Standard deviation

Optimal fusion 13.467 1.210
KL average fusion 11.042 0.771

Independence fusion [3] 21.825 1.491

effects the estimation reliability. We further execute the iden-
tical simulation for 200 trials, and summarize the statistics of
the concentration parameters of these three fusion methods in
Table I. The concentration parameters from the independence
fusion are significantly higher that those of the optimal
fusion. On the contrary, the result from the derived KL
average gives reasonable concentration parameter. In Table I,
the concentration parameters of the KL average are smaller
than those of the optimal fusion, since the proposed KL
average fusion is a conservative fusion scheme. Moreover, no
independence is required in the derived KL average fusion,
which shows its efficiency in distributed networks.

B. The von Mises Consensus over a Network

We simulate the consensus problem discussed in Sec. IV.
The graph G is depicted in Fig. 3, and we consider the edges
are bi-directional. The initial distribution of each node is
summarized in Table II.

When the graph is given, the irreducibility and primitivity
of the weight matrix W are also determined, since we
require that the weights on all incoming informations are
positive. We first pick the weights equally for all incoming
informations, or

wjk =

{
1

|N∗G(j)|
, if k ∈ N∗G(j).

0, otherwise.
(24)
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Fig. 3. The network topology of nodes to reach a consensus. The graph
associated with this topology guarantees the irreducibility and primitivity
of the weight matrix W .

TABLE II
INITIAL CONFIGURATION OF EACH NODE

Node Mean µ Concentration parameter κ

1 2 10
2 1 5
3 0 7
4 −2 2
5 1.5 4
6 3 15
7 −3 6
8 2.2 9

In Fig. 4, we can see that the distribution of each node con-
verges to the same distribution with only local information
exchange, since the condition of Proposition 1 is satisfied.
The converged distribution can be explicitly determined
by (18), which is the weighted average of all the initial
distributions.

To further ensure that the convergent distribution is the
exact average of the initial distributions, we have to ensure
that W is doubly-stochastic. With the same network topology
and the initial distributions, we simulate the consensus with
the Metropolis weights (20), and plot the result in Fig. 5. As
Proposition 2 suggests, all the distributions converge to the
same distribution, and the corresponding complex number of
this distribution is exactly the average of all the associated
complex numbers of the initial distributions.

In addition to the weight selection, Fig. 4 and Fig. 5
also show that even though the derived KL average is
conservative, as long as the graph-induced weight matrix is
irreducible and primitive, the distribution of each node can
reach an equilibrium with convergent concentration param-
eter. Therefore, with properly designed network topology,
we can apply the derive KL average to fuse von Mises
distributions, and the resulting distributions will converge.

VI. CONCLUSION

We study the KL average of von Mises distributions in this
paper. The derived fusion formula can combine several von
Mises distributions in simple matrix operation. Furthermore,
if those von Mises distributions represent estimation distri-
butions, the derived fusion protocol ensures the estimation
consistency, without knowing the exact dependency among
those distributions. Therefore, the derived fusion formula
is especially useful in multi-agent systems and distributed
networks.
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Fig. 4. The dynamics of von Mises distributions in a network with
irreducible and primitive W . The weights are chosen equally for all
incoming information. According to Proposition 1, the distribution in each
node will converges to the same distribution, which is determined by the
Perron vector u and the initial distributions. The mean and the concentration
parameter of the consensus distribution are 2.162 and 3.921, respectively.
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Fig. 5. The dynamics of von Mises distributions in a network with irre-
ducible, primitive and doubly-stochastic W . The weights are the Metropolis
weights to ensure the doubly-stochasticity of W . All the individual dis-
tributions converge to the distribution given by (19). The mean and the
concentration parameter of the consensus distribution are 2.292 and 3.996,
respectively.

Theoretically, this work provides a geometric interpre-
tation and manipulation towards the consensus problem.
Moving towards more general distributions, including higher
dimensional directional distributions as well as the expo-
nential family, we believe that information geometry would
be an useful perspective in the ongoing investigation [21].
In the future, we will also investigate the joint estimation
scheme with the covariance intersection and the proposed
fusion protocol.

APPENDIX: PROOF OF LEMMA 1

Lemma 3 (Modified Bessel functions [22]). For real p ≥ 0,

−p+
√
p2 + κ2

κ
<

Ip(κ)

Ip−1(κ)
. (25)
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Also, for p ≥ 1/2, the inequality Ip(κ)/Ip−1(κ) < 1 holds.

By Lemma 3, we have A(κ) < 1 and for κ > 0,

A(κ) >

√
κ2 + 1− 1

κ
> 0, (26)

which gives the lower bound of A(κ). In [11], we have the
recurrent equation

A′(κ) = 1−A(κ)
(
A(κ) +

1

κ

)
. (27)

By combining (26) and (27), A′(κ) > 0 is obtained.
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