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Currently, the observationplans formostEarth observation satellites are static andperiodic,
and centrally uploaded from ground control. When there is an event of interest that requires
changing the plan, new plans are manually patched and uploaded to the spacecraft. This
approach is limited in that: 1) it may lead to missing short-lived phenomena, and 2) it does not
scale well to very large constellations of satellites. Newmission concepts are starting to leverage
Artificial Intelligence to make autonomous planning decisions in reaction to short-lived events,
which has spurred interest in on board autonomous scheduling. In addition, emerging mission
concepts rely more on distributed systems (clusters, constellations) of heterogeneous satellites,
in some cases with the ability to communicate through cross-links to coordinate their operation.
Motivated by these recent trends towards increased system complexity, decentralization and
on-board autonomy and advances in sensor fusion theory, this paper explores a significantly
different observing paradigm and corresponding problem in which satellites receive a mission
(observations of a target region with a certain set of required attributes and time constraints)
frommission control and autonomously decide whether or not they can and should participate
in such a mission based on their current state and contextual information. Specifically, we
propose a new approach based on three main steps: first, each satellite determines if it can
participate in the mission given the mission specification and its sensor characteristics by
reasoning over a knowledge graph; second, each satellite assesses if it should participate in the
mission by estimating the probability that it can measure the observable of interest using a
decentralized Kalman filter. Third, a central node can then verify the emerging plan using
a probabilistic temporal logic and synthesize a better plan if desired. The new approach is
described in detail and evaluated for a case study concerning the detection of volcano eruptions.
In order to validate our methodology, we compare a set of teams generated by our method for
the problem of volcano eruption detection to a team that is currently being used at NASA to
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perform the same task, with positive results. Finally, we discuss the limitations of the current
method and outline a future path for the method as a whole as well as the individual steps.

I. Introduction
This paper introduces a new decentralized methodology for autonomous on-board planning of Earth Observation

(EO) missions using contextual information. As requirements for EO missions grow tighter, re-purposing available
EO satellites currently on orbit is increasingly considered as a valid alternative to launching new missions, especially
for missions that require high revisit times only attainable through the use of constellations [1]. For example,
NASA’s Technology Taxonomy∗ (a compendium of technologies that are of interest to advancing NASA’s mission)
identifies technologies that foster reasoning, acting, collaboration, and interaction as priorities for development in space
autonomous systems in the next years.

For the most part, current EO satellites are similar to silos as far as planning goes: they have a simple static imaging
concept (e.g., cross-track scanning) that implicitly defines an observation schedule before the beginning of the mission
and that schedule never or rarely changes. Some newer imaging satellites actually have pointing capabilities, like the
Sentinel constellation [2], and they can modify those static plans to capture events of interest. It is quite rare to find
systems for which the schedule is fully defined in near real time, but when this happens (e.g., the Planet constellation
[3]) the scheduling problem is solved on the ground and plans uploaded to individual satellites. In these few cases the
system is always homogeneous and centrally owned and operated by one actor. Many approaches to scheduling and
planning for EO missions have been developed assuming this centralized, on-ground paradigm, including approaches
based on Constraint Satisfaction [4], Genetic Algorithms [5], or Integer Programming [6].

One limitation of the ground-based planning approach is that it potentially misses short-lived events due to the time
incurred between the observation and the data processing on the ground (which includes the time from observation
to downlink plus the time for data distribution and processing). Stochastic urgent events require fast revisit times,
but the average revisit time for many of the most commonly used satellites (which are in Low Earth Orbit) is on the
order of a day at best (such as the observations of MODIS from the Aqua and Terra satellites) and up to two weeks
(e.g. Landsat satellites), and that is only if the satellites have no other constraints, such as VNIR sensors requiring
cloud-free observations. This revisit time may be too long for short-lived or short-notice events such as cloud formation
or volcano eruptions.

A limitation of the centralized planning approach it does not scale well to very large constellations of satellites
(which are gaining popularity) due to requiring expert input. These experts have to be knowledgeable on contextual
information about the mission and available assets to make a decision, and that leaves no time for evaluating many
different options, which may lead to a solution that is not optimal.

Both of these limitations are particularly problematic given the trends in EO system architectures. Experts in the
field have postulated for decades that the future of EO is the Sensor Web [7], i.e., decentralized networks of intelligent
nodes carrying heterogeneous sensors with on-board decision making and cross-link capabilities. However, nothing
close to this has been actually flown. In terms of a having a large constellation of heterogeneous systems actually flown,
QB50 [8] is the closest system. QB50 is a constellation of CubeSats designed and launched by different universities
with heterogeneous and complementary sensors, but it lacks the advanced on-board decision making and full cross-link
capabilities. These technologies however have been demonstrated independently – satellite cross-links by Iridium for
example [9] and on-board decision making by EO-1 [10].

Another proposed (but not demonstrated) concept that illustrates the trend towards decentralization and on-board
decision-making is that of federated systems [1], in which satellites owned and operated by different organizations come
together opportunistically and temporarily to work on emerging tasks.

Our approach is particularly suited for such future EO system concepts, as the different actors involved in a federation
or large distributed system like QB50 may have used different onboard “dictionaries” to define and reason about their
satellites’ capabilities. Our approach’s context mining and reasoning are suited to deal with different sources of data to
harmonize them and get some level of interoperability between these satellites.

All these new approaches to EO –the Sensor Web, federated systems, the QB50 constellation– require new
decentralized planning algorithms. Other than the approach described in this paper, in recent years there has been a
constant stream of research in on-board scheduling for EO satellites. In [11], Li et al. introduce an autonomous online
approach to satellite scheduling that can handle urgent tasks arriving stochastically during the planning by using two
heuristics to decide when to schedule and how to do so. In more recent work, Li [12] expands their work to encompass a

∗https://www.nasa.gov/offices/oct/taxonomy/index.html
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whole distributed satellite system, and bases their algorithm on the asynchronous version of the consensus-based bundle
algorithm (ACBBA) [13]. Another example, also based on CBBA, is the approach by Gallud and Selva described in
[14] for decentralized planning in distributed and federated EO systems.

As an example of a representative problem and corresponding distributed EO system, consider the case of detecting
volcano eruptions. NASA has developed two parallel approaches for this purpose. On the one hand, it has been using
data from both the Aqua and Terra satellites’s MODIS sensor to create MODVOLC[15], a detector for eruptions around
the Earth with a revisit frequency between 24 and 48h, which may not be fast enough in the case of explosive eruptions.
The other, more recent, approach is described in detail in [16]. It combines in-situ and space observations to monitor
when an eruption happens and trigger special observations for some satellites and ground assets. In the case of ESA,
they developed the Geohazards Exploitation Platform (GEP)†, which combines images and radar information from the
Sentinel 1 and 2 constellations to detect natural disasters, including volcano eruptions. In the three cases, pointing
satellites to take extra images of a region of interest requires a complicated process involving humans and approval
processes on the ground.

In this paper, we propose a new approach for the decentralized planning problem for heterogeneous, distributed (and
potentially federated) EO systems. In this approach, agents independently choose whether and how to respond to a new
mission through the use of contextual information. A preliminary offline step of our approach is the mining of such
contextual information. Through this paper, we use an extensive definition of contextual information, including facts
ranging from the capabilities of a satellite and its sensors such as accuracies, power, image resolution, fields of view, and
other characteristics, as well as information about their current status including orbital information and whether sensors
are operational or not. This contextual information also includes knowledge about the physics of the Earth system
and remote sensing, such as how different so-called Level-1 measurements (e.g., TIR radiances or radar back-scatter
cross-sections in L-band) relate to geophysical parameters or Level-2 products (e.g., land surface temperature or soil
moisture) and the relation between a mission specification and a set of geophysical parameters to observe. This context
could optionally include information about other satellites and their capabilities. Going back to the volcano eruption
example, this means the context has information on volcano eruptions generating heat, land displacements, and ash
plumes, and we also know that Thermal Infrared (TIR) and Short-Wave Infrared (SWIR) radiance can be used to
measure temperature at different ranges, and SAR interferometry can provide ground surface motions (gradients of
velocity vectors). Note the wealth of information that is fed to the planning algorithm. In comparison, the approaches
mentioned before only take into account a much more narrowly defined state of the satellite as needed to schedule their
missions. This comprehensive context information is intended to help with planning by eliminating the need for an EO
expert at different steps of the process. While a classic approach requires an expert to realize that TIR sensors can be
used to measure the temperature increase in the surface of a volcano during an eruption and then consider the available
TIR sensors, our proposed method can derive this piece of information by itself and conduct those steps autonomously.
Once this is done, the algorithm can use each satellite and sensor status information to decide what are the best out of all
these to participate in a mission to monitor a specific volcano. In order to extract all the necessary information about
sensors, observables, etc, we have used unstructured text mining techniques to fill a probabilistic knowledge graph (KG),
which is a set of tuples consisting of a fact represented as a triplet (concept �1, relation ', concept �2) and a probability
? of that fact being true. This KG is then coupled with a mixed probabilistic- and logic-based reasoning system in
order to infer more relations and reason about which satellites can participate in a given mission. Since such a general
problem has never been considered before in EO, no other approach in the literature uses a similar reasoning system to
start the planing procedure.

Once we have the contextual information for each agent, our approach has three steps, each adding significant novelty
to the way scheduling is done for EO systems: first, each satellite decides whether it can participate in the mission by
comparing its capabilities with the mission specification (e.g., a satellite with a VNIR or TIR imager can participate
in a volcano detection mission) and checking if it has potential visibility of the target region in the specified period
of time. This step is done by reasoning over a knowledge graph (partially mined from scientific papers) containing
relations between different sensor types, geophysical parameters and observables. While this first step provides a very
computationally efficient down-selection of the agents that need to consider the mission, it is essentially a binary check
that only considers the capabilities of the satellite as opposed to the expected performance. Hence, in the second step,
each satellite that has decided it can participate rates its potential to add information and thus value to the mission by
considering more detailed sensor specifications (e.g., sensor accuracy) and the specific processes involved, in order to
decide if it should participate. In the literature, these scores are usually calculated semi-qualitatively. For example, in

†https://geohazards-tep.eu/
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the VASSAR methodology [17], scores are computed through a set of rules that take into account sensor characteristics
such as spatial resolution, revisit time, accuracy, etc. Often, this number comes from subjective numbers based on
expert judgment. Rather than relying on subjective assessments of the value of different combinations of parameters, our
approach is based on the physics and mathematics of sensing. Because computing a full error budget for the parameters
of interest onboard is impossible based on the information available, we propose a new simple but powerful theoretical
framework to estimate the uncertainty in the measurements of each sensor based on a decentralized Kalman filter. In
this paper, we consider the case of an event detection mission (specifically volcanic eruption detection) as opposed to
other types of missions. Hence, the result of the Kalman filter is fed to a classical binary hypothesis testing framework to
assess the probability that the sensor can detect the event of interest. In a completely decentralized system, each satellite
could simply decide to act based on the output of this step. However, in practice, there is likely value in considering some
coordination between the satellites. In this paper, we consider the case where a central node synthesizes a teaming plan
based on the input from each sensor and formally verifies that it can satisfy the mission using probabilistic temporal logic.
While the approach does do some search for a good team, it does not find the optimal team as it is a computationally
intractable problem. The formal methods approach to the verification of the decentralized plan based on probabilistic
model checking is very new for EO and provides a rigorous theoretical framework to synethesize and reason about plans
including complex constraints, e.g. related to scarce on board resources. Our method is applicable for space-based
observation of any geophysical parameter, although it is most useful for remote sensing of short-lived or short-notice
processes and phenomena by constellations of satellites with heterogeneous sensors (e.g. QB 50) or federated systems.

More generally, the problem we are trying to solve is formulated as follows: given a mission specified by 1) a
geophysical parameter of the Earth to observe such as sea surface height or soil moisture, or an event such as a volcano
eruption, 2) a region (e.g. the Arctic, the Mediterranean basin, or the Pacific Ring of Fire), and 3) some time-related
requirements (mission duration of a week or month, revisit time of two measurements a day, or a maximum gap
between measurements of 24 hours), find a selection of teams of satellites that will perform the required observations
to successfully carry out the mission. Optionally, the mission statement can also include other parameters such as spatial
resolution, accuracy, etc. Of note, relevant requirements for many parameters can be readily obtained from the online
World Meteorological Organization (WMO) OSCAR database‡.

The main performance metric in this paper is in the form of a probability of success in the mission. Since teams with
more satellites have higher probabilities of success, the output of the system is a Pareto frontier of teams generated by our
decentralized approach, with a probability of the mission succeeding for each team vs the number of satellites involved.
This probability can be calculated a priori without seeing any dataset. If a real dataset is provided, a probability for each
of the teams successfully carrying out the mission in the context of the data can be computed for verification.

The set of available agents can be the set of all Earth observing satellites currently in space, which can be extracted
from the CEOS database§. This database contains information about all the current and planned Earth observation
missions and their sensors.

For example, if the mission is to measure soil moisture in the Mediterranean basin daily for one month, one would
expect that the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites would
both volunteer to participate in the mission, but more sensors (e.g., C-band radar from Sentinel) may be required to
achieve the desired mission attributes. In order to compare against a team that is already in the literature to validate our
approach, we formulate a simple but general and relevant test problem consisting of detecting a volcano eruption based
on remote sensing of land surface temperature, aerosol plumes (especially SO2), and land surface displacements in one
out of the 10 most active volcanic areas on Earth, but the problem is readily generalized to any other event that can be
linked to one or more geophysical parameters.

In order to ensure our planning algorithm works, we compare our set of teams to the team used in [16] to perform
exactly the same task. Their team is comprised of the following satellites: Aqua, Terra, the Sentinel 1 constellation, the
Sentinel 2 constellation, and all active GOES satellites. Given that a similar metric to the probabilities outputted by our
algorithm for that team is unknown, we have processed the team through the same pipeline as our teams in order to
ensure a fair comparison.

‡https://www.wmo-sat.info/oscar/
§http://database.eohandbook.com/
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II. Methodology

A. Overview
An outline of the system can be seen in Figure 1. The outline described in the flowchart is the approach with a

centralized decision node (represented by the optimization algorithm). In the case of the decentralized approach, the
optimization algorithm changes to a threshold-based approach where each satellite decides to participate based on its
own perceived usefulness to the mission. The next subsections describe the subsystems in the flowchart, as well as the
teaming algorithms.
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Fig. 1 System flowchart, showcasing the interactions between the components in our approach

B. Knowledge representation
The knowledge representation framework requires different types of knowledge: 1) domain knowledge, which

includes knowledge about: a) events of interest and related observable physical phenomena (e.g., volcano eruptions
generate heat and ($2 aerosols), and b) sensor types and their capabilities to measure various geophysical parameters
(e.g., a short-wave infrared sensor can measure aerosols, thermal infrared sensors can measure heat); 2) knowledge about
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the mission at hand (e.g., to detect volcano eruptions in Hawaii); 3) knowledge about the agents and their sensors that
are available to perform missions (e.g., a particular agent can measure TIR radiance with 5% accuracy); 4) knowledge
about the state of each agent (e.g., is sensor operational, is the target in visibility of the sensor).

These different types of knowledge can all be represented with a probabilistic knowledge base, as seen in Figure 2.
Each agent has a copy of this knowledge base, which can either contain only relevant information to the agent or all the
information for the system. Part of the knowledge is intrinsically probabilistic, as seen in the figure.

Fig. 2 Different types of knowledge in the probabilistic knowledge base, with their sources and their associated
uncertainty

While the sources of knowledge for the mission, the agent state, and the sensor characteristics are relatively clear,
finding the domain knowledge linking the sensor capabilities and characteristics to the mission at hand is a challenge.
The basic idea is that one must find a path in the KG from the geophysical parameters observable by the sensor to
the target observable event required by the mission. This path may in general require multiple steps (e.g. volcano
eruption→heat→thermal infrared (TIR) radiation→TIR sensor). If the path already exists in the KG, then one can
proceed with inference. However, if such a path does not exist in the KG (e.g., the agent does not currently know that
heat is related to TIR radiation), the agent will then attempt to find new information linking those entities from other
existing corpuses. In the case an Internet connection is available, the agent will source the information from there. This
being said, most satellites in space lack access to the Internet, so they might have to look for such information in local
copies stored in each agent. This requires extracting information from unstructured text sources such as databases
of papers, using techniques such as Named Entity Recognition (NER) [18] and Relation Extraction (RE) [19]. For
the approach described here, we have built a Natural Language Pipeline (NLP) to extract the links between different
observations, sensors, and physical phenomena from papers published in the Transactions on Geoscience and Remote
Sensing journal¶. Specifically, our pipeline includes an NER pipe based on the Scibert Transformer [20], followed by
an Entity Linker (EL) to match the extracted entities to out KG. The EL is based on the models in SpaCy 2 [21], and
retrained for our KG. The last part of the pipeline is an RE engine that we have built for this project that creates new
relationships in the KG between the entities that have been found in the previous steps.

Two longer term research challenges related to both knowledge representation and reasoning in our system are: 1)
modeling the different types of uncertainty that exist in the problem, and 2) how the knowledge and its uncertainty
change over time.

We define two sources of uncertainty. It may be aleatory (e.g., random noise in the sensor) or epistemic (e.g., lack of
information about a sensor, observable, mission, or relations between them). Aleatory uncertainty can be modeled as
usual with probability theory. However, for epistemic uncertainty, KGs lack the capacity to easily represent uncertain

¶https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
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facts. We are exploring approaches combining probability and logic, such as Probabilistic Soft Logic [22] and Markov
Logic Networks [23]. In Markov Logic Networks (MLN), rules can have weights related to the probability of the rule
being true, but the evidence is still Boolean. Soft logic approaches allow for uncertain evidence. Regardless of the
implementation, the requirement is to have a probabilistic knowledge base where both the evidence and rules have an
associated probability of being true. How we obtain these probabilities for the case of epistemic uncertainty is another
challenge that can be addressed, for example, with embedding-based methods, which will be explained in more detail in
the next section.

In the case of the time dependency of both knowledge and uncertainty, we have to take into account all the different
time-dependent sources of information. For example, the mission might change at any time, as well as the agent state,
with sensors being taken down or up depending on system status. While the sensor characteristics are relatively stable,
the domain knowledge is continuously being updated with the publication of new information, and a successful system
will require keeping up to date with the latest advances in the field in order to stay competitive. Such changes might add
new relationships to the KG or change the uncertainty on existing ones.

C. Reasoning over KG
Notation A knowledge graph, denoted by G = {�, ', $}, consists of a set of entities � , a set of relations ', and a set
of observed facts $. Each fact in $ is represented by a triple (48 , A: , 4 9 ), where 48 ∈ � , 4 9 ∈ � , and A: ∈ ' denote
subject entity, object entity, and relation, respectively.

The KG reasoning module is responsible for deciding whether a satellite can participate in a given mission. Given a
KG containing both common sense knowledge about the field and knowledge about the sensors we have, and a set of
logical rules specified by domain experts, we aim to predict which sensors can participate in the mission by leveraging
the relations between geophysical parameters observable by the sensors and the objective events required by the mission.

There are two main directions for solving the posed problem, which is also known as KG inference: logical rule
reasoning and knowledge graph embeddings (KGE). Traditional logical inference aims to find unobserved facts given a
set of rules and the currently observed facts, which results in maximizing the number of rules that can be satisfied;
on the other hand, KGE aims to capture the similarity of entities by embedding entities and relations into continuous
low-dimensional vectors. With the learned embeddings, the KGE approach is able to compute a score for each triple
in a KG that indicates the plausibility of the triple. We denote the score of a triple (48 , A: , 4 9 ) computed by KGE as
5A: (48 , 4 9 ). Logical rules and KGE can mutually enhance the reasoning ability of each other in an iterative process [24].
To better model the interactions between embedding learning and logical inference, we will use a unified framework
to integrate embeddings and First Order Logic Horn rules in an iterative manner called UniKER [25] developed by
authors Cheng and Sun, referred as Reasoning over Knowledge Graph in Figure 1. In particular, UniKER shows that the
knowledge contained in Horn rules can be exploited and completely transferred them into the embeddings without the
need for sampling ground rules or hidden triples in KGs. Additionally, UniKER can tolerate erroneous data and thus
shows robustness to noise (extraneous facts) and errors (incorrect facts) in the KGs, which previous methods cannot
cope with [26, 27].

The basic idea of the algorithm is as follows: we leverage the reasoning power of Horn rules by deriving a satisfying
truth assignment v)

�

∗ and v�
�

∗ by a forward chaining algorithm, where v)
�

∗
= {A: (48 , 4 9 ) = 1 | A: (48 , 4 9 ) ∈ v� } and

v�
�

∗
= {A: (48 , 4 9 ) = 0 | A: (48 , 4 9 ) ∈ v� }. Knowledge contained in Horn rules is guaranteed to be fully exploited by

taking v)
�

∗ and v�
�

∗ as guidance to optimize the KGE model. We summarize the iterative learning procedure as follows.
We start by training a KGE model over the observed facts $. Next, following the forward chaining algorithm, we derive
the triples set v)

�

∗. In particular, each iteration consist of the following steps:
1) Considering that potential noise could affect the performance of forward chaining, we regard \% triples with

lowest prediction scores 5A: (48 , 4 9 ) as noise and remove them from observed facts $ to have a cleaner KG.
2) To relieve the data sparsity issue in real-world KGs, we also include potential useful hidden triples to enhance the

reasoning ability of Horn rules. Then, we classify all triples in Δ and add the positive triples to $.
3) After that, by looking for the ground rules whose bodies are satisfied in $, we obtain a subset v)

�

8∗ of the
satisfying truth assignment v)

�

∗.
4) To reduce some of the uncertainty brought by logical rules, we utilize the trained KGE model to check the

correctness of the inferred triples in v)
�

8∗ and exclude \% triples with lowest prediction scores 5A: (48 , 4 9 ) from
v)
�

8∗.
5) After that, we continually train the KGE model over v)

�

8∗ and add v)
�

8∗ to KGs by setting $ = $ ∪ v)
�

8∗.
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The final triples obtained through UniKER are used to create a list of satellites and sensors within them that can
participate in a given mission. This list of satellites is then sent to the Sensor Planning Framework to compute whether
they should participate in a mission or not.

D. Sensor Planning Framework
The Sensor Planning Framework is an analytic algorithm to compute an a priori error probability on sensing

objectives (e.g., the probability of one sensor successfully detecting an event, or the probability of successfully detecting
an event if multiple sensors join the mission) based on the contextual knowledge each agent has. We have developed a
sensor planning algorithm to calculate the error probability of each participating sensor based on the specific estimation
algorithm chosen. Given agents that decide to participate in the mission, the estimation algorithm computes an estimate
of the mission objective (e.g. probability of an event %(�E4=CC )) using the agents’ sensor capabilities.

To be more specific, it provides the certainty that our sensors are going to tell the truth about their own observation,
i.e. the probability that a sensor successfully detects the corresponding observation of an event given the event happened,
as well as the probabilities of a false positive, true negative, and false negative. The sensor planning algorithm assumes
the process is linear and estimation of mission objectives are done through the estimation algorithm. In our case, we use
a Kalman Filter series estimation algorithm such as the ones in [28] [29] [30], given their track record in satellites and
other vehicles. Kalman filters can also be applied to multi-sensor data fusion [31] [32].

Thus, our method takes the following matrices as input for each sensor from the KG: Process Model:=�, �,
Observation Model:= �, Covariance of Measurement noise:=', Covariance of undetermined/initial process noise:=&.
Then, the algorithm outputs the error bound of the estimation algorithm Σ and %(�4C42C43 |�E4=C) over time. The
sensor teaming planning algorithm is run before observing the real-world data feed. The idea behind this algorithm is to
gather information in order to create a team before it commits to taking the measurements for the estimation algorithm,
thus avoiding resources and time waste.

Given observation data from a formed team (e.g. temperature, aerosols, and land displacements close to a volcano),
the estimation part of the algorithm will compute the optimal estimated states of the sensors (e.g. near-optimal estimate
of real land surface temperature). The estimation algorithm takes real-world measurements: observations of sensors IC ,
system matrices of the sensors as mentioned in the previous paragraph and confidence factor F8 of each sensor as inputs,
and outputs the probability of an event happening over time %(�E4=CC ), but this time with the real data behind it instead
of just an apriori estimation.

The formal definition of the problem is given below:

1. Problem statement
Given �, �, �, &, ' of a sensor, we use this particular sensor to observe physical quantities for a long period of

time (e.g. t = 100 days). Then, we assume that on the next time step C + 1, the sensor outputs either DC = 0 >A 1 (event
does not happen or event happens). First, compute the probability that the sensor decides DC = 1 given the fact that
DC = 1 (true positive). Then, compute the probability that the sensor decides DC = 0 given the fact that DC = 1 (false
positive). Further, compute the probability that the sensor decides DC = 0 given the fact that DC = 0 (true negative).
Finally, compute the probability that the agent decides DC = 1 given the fact that DC = 0 (false negative).

2. Problem Clarification
The probability that we calculate here is actually a testing in a binary situation. Assuming that we have two

hypotheses:
• �0 : DC = 0 (no events happen)
• �1 : DC = 1 (events happen)
There are four probabilities that need to be computed:
• �1 is true, decide �1 : given the �1 is true hypothesis, decide H1 is in force: %A>1{342834�1 |�1CAD4} = %�
(probability of detection)

• �0 is true, decide �1 : given the H0 is true hypothesis, decide �1 is in force: %A>1{342834�1 |�0CAD4} = %��
(probability of false alarm)

• �1 is true, decide �0 : %A>1{342834�0 | �1CAD4} = %" = 1 − %� (probability of missing)
• �0 is true, decide �0: %A>1{342834�0 | �0CAD4} = %�' = 1 − %�� (probability of correct rejection)
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3. Method and derivation
Consider the system model and the observation model:
• Prior: GC | I0:C , D0:C−1 ∼ # (`C |C , ΣC |C )
• System model: GC+1 = �GC + �DC + FC , FC ∼ # (0, &), where GC+1 |GC ∼ # (�GC + �DC , &)
• Observation model: IC+1 = �GC+1 + EC , EC ∼ # (0, '), where IC |GC ∼ # (�GC , ')
Using a Kalman filter as a linear quadratic optimal estimator, the Kalman prediction step to estimate state G and its

likelihood is defined as follows:
• `C+1 |C = �`C |C + �DC
• ΣC+1 |C = �ΣC |C �) +&
Then, we define the update step as follows:
• `C+1 |C+1 = `C+1 |C +  C+1 |C (IC+1 − �`C+1 |C )
• ΣC+1 |C+1 = (� −  C+1 |C�)ΣC+1 |C

where the Kalman gain is:  C+1 |C = ΣC+1 |C�) (�ΣC+1 |C�) + ')−1

In the Kalman filter, the objective is to calculate:

?C+1 |C+1 (G) =
?(IC+1 |G)?C+1 |C (G)
?(IC+1 |I0:C , D0:C )

In our method, the objective is to calculate uncertainty of the input in the last time step DC . More specifically, given
a binary candidate input sequences D 9C = {0, 1}, 9 ∈ {1, 2}, evaluate the likelihood of each input over time given only
observations I0:C+1. Therefore, the error probability function that we try to compute is ?35 (DC |I0:C+1, G0:C , D0:C−1), denote
it as ?35 (*).

?35 (DC |I0:C+1, G0:C , D0:C−1) = ?35 (*) = IC+1 − ��`C |C = IC+1 − �`C+1 |C
In the Kalman filter, ?35 (*) is also Gaussian under each hypothesis and its distribution is as follows:

* (IC+1) ∼
{
# (`D1 , ΣD1 ) D=34A �0

# (`D2 , ΣD2 ) D=34A �1

where,
`DC = E[IC+1−�`C+1 |C ] = E[�GC+1+EC−�`C+1 |C ] = E[��`C |C +EC−� (�`C |C +�DC )] = E[EC +��DC ] = ��E[DC ]
ΣDC = Var[IC+1 − �`C+1 |C ]

8=34?4=
= Var[IC+1] = Var[�GC+1 + EC ] = �ΣC+1 |C�−1 + ' = � (�ΣC |C �) +&)�−1 + '

Therefore, the error probabilities %� , %��, %" , %�' can be calculated using the following equations:
%� =

∫ ∞
_
?35�1 (*) =

∫ ∞
_

N(`D2 , ΣD2 )
%�� =

∫ ∞
_
?35�0 (*) =

∫ ∞
_

N(`D1 , ΣD1 )
%" = 1 − %�
%�' = 1 − %��
where, _ is when N(`D2 , ΣD2 ) = N(`D1 , ΣD1 )
For each single sensor that observes a single geophysical property, we can use the above method to calculate their

error probabilities respectively. In the case of a sensor with more than one measurement, we assume it can be split into
multiple sensors so the former is always valid.

The results of this portion of our approach are used to inform the creation of teams by either the fully decentralized
approach or the team synthesis approach described in the following section (II.F).

E. Verification and Synthesis of Team Assignment
Formal verification has been used in a wide range of applications to verify the safety and correctness of systems with

respect to given specifications [33] [34] [35]. In our system, the aim of the verification step is to provide information
about the likelihood of mission success given a teaming assignment and sensor properties. Individual agents decide
whether to participate or not, but a centralized decision needs to be made to ensure that the mission constraints are met
at a team level. If it is determined that the mission is likely to fail, the Sensor Planning Framework then assigns a new
team of agents.

Alternatively, the centralized node can also create a teaming plan using synthesis. Formal synthesis provides a
framework for automatically translating high-level specifications into correct-by-construction controllers. The user is
able to reason about the task specification rather than the actual implementation [36]. The aim of the synthesis step is to
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create an optimal teaming plan given a list of possible agents and their capabilities. This method provides a globally
optimal teaming solution.

There are three main steps in performing synthesis for the mission:
1) Encoding the mission as a formal specification. Specifications are often written using temporal logic [37],

which allows us to reason about requirements and constraints that change over time. In particular, we use
probabilistic computation tree logic (PCTL) [38] to write the specification. The specification can also include
constraints on the system (e.g. sensor interference).

2) Creating a system model. The assigned team is modeled as a Markov Decision Process (MDP). Each state
within the MDP contains information about which agents and sensors are used, as well as which observations are
measured.
The uncertainty in the sensor readings are represented as probabilities, which change over time as the Sensor
Planning Framework receives more measurements to improve the sensors’ state estimations. From these
probabilities, we calculate the transitions between states in the MDP. The transitions represent the probabilities
that a specific combination of sensors measure the necessary observations are measured at a given timestep.
Also encoded in the MDP is the physical behavior of the agents. For example, in our use case, the target volcano
is only visible to the satellites periodically.

3) Verifying the decentralized team. Once the mission specification and system model is created, we use PRISM
[39], a probabilistic model checker, to calculate the probability of success of the decentralized teaming plan. If
this probability falls below a designated threshold, the verification step requests a new team assignment from the
Sensor Planning Framework.

4) Synthesizing the optimal team. Optionally, the centralized node can synthesize a globally optimal team from a
list of potential agents. To do so, the model checker maximizes the probabilities of the MDP state transitions,
while taking into account any constraints given in the specification. If the mission contains multiple objectives
(e.g. maximize the probability of mission success while minimizing the number of satellites), PRISM outputs
the Pareto front for all viable teams.

F. Teaming Algorithm
The teaming decision, as explained in the introduction, can be done through two approaches, depending on whether

centralization of decisions is acceptable. Both of them start with mission control sending a mission to all satellites.
Each satellite and sensor comes up with a probability of completing the mission successfully (aka detecting the event in
our case), as described in Section II.D. In the decentralized case, if they clear a predetermined threshold they decide to
participate. In the centralized approach, a central node receives the probabilities from each satellite and performs a
greedy optimization based on the success probability for the chosen team, creating a Pareto front of teams of different
sizes and their respective probability of success.

III. Results
In order to validate our complete approach to the planning problem, we compare the teaming results of our approach

to the team described in [16]. This comparison can be seen in Figure 3, where each dot is a team with their daily
assignment of satellites (e.g., Day 1: Sentinel-1, EO-1, Day 2: GOES-13) (which we will call Teaming Strategies
going forward), as outputted by the Verification module . The X axis represents the mean number of satellites that have
to be used per day, and the Y axis is the maximum computed probability of mission success based off the results of our
system. In order to ensure that the scores are fair to each team, each dot is computed as the average of the teaming
strategy applied to 50 random missions generated by a Monte-Carlo approach. Thus, the blue dots represent the best
teaming strategies by tasking the whole Earth Observation constellation currently on orbit to figure out a plan for our
random missions, while the red dots are the best teaming strategies our approach returns when given the choice of only
using the satellites in the benchmark team for the same random missions.

The mission assigned to our teams and the benchmark team is the same, and that is to observe at least 2 out of 4
parameters (MWIR, TIR, SAR, and Cloud Cover) every day for two weeks in a random location of Earth with high
volcanic activity.

We observe that the best teaming strategies –in terms of the trade-off between probability of success and satellite
usage– generated by our approach (the blue dots) dominate the teaming strategies generated from the benchmark team at
NASA we described (the red dots). Therefore, our approach appears to create better teams and teaming strategies than
the benchmark team that is already in use – according to our own metrics, which may be different from the ones used by

10

D
ow

nl
oa

de
d 

by
 U

C
L

A
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 1

0,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
14

69
 



0 1 2 3 4
Mean number of satellites used/day

0.0

0.2

0.4

0.6

0.8

m
ax

 P
(s

uc
ce

ss
)

Pareto front of teams (top left is better)
Dominated teams
Pareto of Benchmark team
Pareto from our Simulation

Fig. 3 Probability of mission success as a function of mean number of satellites used per day for various
teaming strategies. Results demonstrate that our approach is capable of creating teams and daily assignments
out of those teams that compete and even improve upon expert-designed teams.

NASA to make this decision.
Additionally, we provide some intermediate results showing the outputs of the different subsystems in this method.

A. Results from Knowledge Representation
The main result of this subsystem is an initial Probabilistic Knowledge Base, which can be represented either as

triples or as part of a Graph Database, as seen in Figure 4. The knowledge base has a total of 2460 nodes and 12500
relationships. Specifically, there are 635 satellites, 927 sensors, 168 Measurements, 519 Types of Sensors, and 169
Agencies, among others. The relationships are between sensors, satellites, measurements, events, with some examples
being what types of sensors can measure what properties (with 3403 of those), and which measurements can be used
to create higher level measurements and data products (a count of 519), as well as relations between events and their
observable properties. For example, it finds that TIR Imaging multi-spectral radiometers can generally measure Earth’s
surface reflectance.

If we include the results from the knowledge extraction pipeline, there is an increase of nodes in the knowledge
graph from 2460 to 3063 (an increase of 24.5%, with new measurements and properties leading the increase), while the
number of relationships between nodes has increased from 12500 to 14500 (an increase of 16%, mostly in the field of
what sensors can measure what).

B. Results from Reasoning over KG
The main result of this subsystem is a list of candidate satellites that can participate, i.e., that are potentially useful

for the given mission. There are 161 active EO satellites orbiting Earth right now in the CEOS database. For the given
mission “Active Volcano Monitoring”, UniKER gives a total of 113 satellites among them as candidate satellites as far
as sensor capabilities go. To validate our prediction, we compare our prediction with a handcrafted ground truth based
on results from the CEOS database and the accesses of the satellite over the Kı̄lauea volcano. 89 satellites are identified
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Fig. 4 Excerpts from the Graph and Triples databases, showing information on the satellites and sensors
currently in orbit

in this ground truth as potentially useful satellites for our example mission from those in the CEOS database, according
to their status as currently active, a path in the KG connecting their sensors to the observable properties (e.g. a TIR
sensor can measure TIR Radiance - TIR radiance is generated by heat - a volcano eruption generates heat), as well
as flying over the volcano at the right times. UniKER’s logic prediction is able to find all 89 satellites given that all
relationships linking measurements and events are present in the KG.

In addition, as our approach combines embedding and logical rules for better KG inference, in order to show the
enhancement of logical rules over embeddings we compare our proposed framework with TransE. TransE is the most
representative knowledge graph embedding model, which learns graph embeddings without the incorporation of logical
rules. As shown in Figure 5, we have plotted the two principal components of the learned embeddings for all satellites.
In particular, the red nodes represent the potential useful satellites given in our ground truth while the black nodes
represent other satellites in the KG. We can observe that with only the embedding model, it is difficult to distinguish the
useful satellites from the others, while with the help of logical rules, the quality of embeddings is improved dramatically.

C. Results from Sensor Planning Framework
The sensor planning framework outputs the probability of each participating satellite successfully detecting an

event given the event happened (true positives), as well as the probabilities of a false positive, true negative, and
false negative. To show an example of this intermediate result, we use the sensor planning algorithm to calculate the
?(�4C42C43 |�E4=C�0??4=B) for NASA’s benchmark team in Table 1. We can see that, as we would expect from
pieces of technology that usually cost millions of dollars, most sensors are good at what they do. This seems to prove
that our system can accurately predict the probabilities we have mentioned.
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(a) Result for TransE (b) Result for Our Proposed Framework

Fig. 5 Visualization of a Principal ComponentAnalysis of EmbeddingVectors, showing thatUniKER is capable
of distinguishing useful satellites better than TransE.

Table 1 Benchmark Team From NASA and the computed probabilities of event detection from the sensors in
each satellite

Satellites Sensors Observation ?(�4C42C43 |�E4=C�0??4=B)

Aqua

AIRS Land surface temperature 0.99899652

MODIS
Land surface temperature 0.99899652

Fire temperature 0.99999966

AMSU-A
Land surface temperature 0.99899652

Cloud type 0.84130652

Terra
ASTER

Land surface topography 1.
Land surface temperature 0.99899652

Cloud type 0.99899652

MODIS
Land surface temperature 0.99899652

Fire temperature 0.99999966
Sentinel-1 A C-Band SAR Land surface topography 0.99899652
Sentinel-1 B C-Band SAR Land surface topography 0.99899652

GOES-15 Imager
Land surface temperature 0.99122158

Fire temperature 0.99999882

GOES-17 ABI
Fire temperature 0.99999966

Land surface temperature 0.99899652
Cloud type 0.84130652

D. Results from Synthesis of Teaming Assignment
The synthesis subsystem outputs the probability of mission success and the optimal team given information from

the Sensor Planning Framework and the KG. We generate a Pareto front of two objectives: minimizing the number of
satellites and maximizing the max probability of mission success, where the mission is to monitor any eruptions of the
Kı̄lauea volcano over a two-week time frame. To reduce the computation time, the process is parallelized to synthesize a
Pareto front for each timestep, which is then aggregated into an overall plot (see Fig. 6). To cover the entire length
of the mission, we generate a sample of all possible teaming combinations of the parallelized daily results, which are
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shown in gray. The red points represent the approximate Pareto front found from the sample.

Fig. 6 Pareto front for a mission to monitor any eruptions of the Kı̄lauea volcano over two weeks, given a list
of potential satellites. Each point on the plot corresponds to a different synthesized teaming plan.

The Pareto front provides a way to compare the benchmark team to the final team our system outputs. While the
objective is to maximize probability, the other objective of the Pareto front can change depending on the priorities of the
mission (e.g. minimizing energy usage instead of number of satellites, or some more complicated utility function).

IV. Conclusion
This paper described a new decentralized, context-based, on-board planning algorithm for future EO systems such

as sensor webs, smart heterogeneous constellations, or federated systems. We explained in detail the three steps of our
method, where each satellite first decides whether it can participate, then if it should participate, and finally a central
node creates and formally verifies a good (potentially optimal) team for the mission. Two different teaming algorithms
were described, based on the desire for more optimal centralized synthesis. Initial results for each step as well as the
whole method were provided. These initial results show that our approach can create teams with a higher probability of
success while using less satellites daily to perform a volcano monitoring mission than currently available systems that
perform the same task.

The main limitation of this paper is the lack of more valid benchmarks and comparison systems to characterize the
performance of the proposed approach. Although the comparison described in the Results section is a good first step,
a more exhaustive performance benchmark is necessary. In order to further validate our system, we plan to create a
benchmark platform with missions and benchmark teams against which our approach can be compared to the approaches
mentioned in the introduction. We are particularly interested in comparing our system to other decentralized approaches
such as the ACBBA-based approach described in [12], as well as the modified CBBA approach in [14].

A further limitation of the approach is that when it checks whether a satellite should participate in a mission, it
does not check what that would imply for the current mission being performed by that satellite. We plan to extend the
approach to a multi-mission framework in the future in order to address this limitation, as well as allow for different
types of mission, such as multiple event detection, instead of the current single event detection approach. For example,
we would like to test the system with a meta-mission to detect multiple natural disasters instead of just limiting it to
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a single one, like a Volcano Eruption. This requires expansions in all parts of our approach, among other things to
support the testing of multiple simultaneous hypotheses.

In addition, in order to validate the a priori probabilities of success that are given as an output of our approach, we
plan to enhance our current Monte-Carlo simulation system to include timelines for each of the physical observations
for each random event and check whether the system’s is capable of detecting the correct percentage of events (i.e. if the
approach says a certain team will detect an event 90% of the time, it should detect 9/10 events).

Finally, we plan on further expanding the text mining capabilities to keep increasing the size of the KG, as well
as incorporating more complex constraints on the mission specification that involve spacecraft resources, which are
assumed as infinite and perfect right now. Besides, we plan on adding a capability for the system to understand and
exploit sensor synergies. Furthermore, our team synthesis approach has two steps where a random algorithm is used due
to the time complexity of the optimal approach. These will be improved upon by using algorithms currently available in
the literature such as Tournament Selection and Genetic Algorithms.
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