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Abstract

Results published in the paper “Dissipation of stop-and-go waves via
control of autonomous vehicles” show that it is possible in principle to
attenuate the propagation of traffic waves on a ringroad using a single
autonomous vehicle. The proposed controller for the vehicle, called the
Follower-Stopper, requires prior knowledge of the characteristic velocity
of the ringroad in order to fully attenuate the oscillations in system. Here
the characeteristic velocity of the vehicle refers to the velocity of each of
the vehicles in the constant velocity solution that any traffic dynamical
system admits as a solution. Of course in real-world situations one does
not have complete knowledge of the state of the system so determining
the characteristic velocity poses a challenge. We propose a solution to
this problem using plant inversion.

Problem Formulation

Consider a platoon of N vehicles placed on a ring road of length L, where vehicle
i − 1 is ahead of vehicle i. The length of the road is assumed to be changing
with time so that the density of the vehicles on the ring may be varied without
changing the number of cars. In the formulation below, the system is modeled
as a dynamical system with input L and outputs h and v, the headway and
velocity of the (N − 1)-th vehicle in the platoon.

Traffic System
L(t) hN (t), vN (t)

Figure 1: Open Loop System Diagram

Let si and vi denote the position and velocity of the i-th vehicle respectively.
We assume that the system obeys car-following dynamics, where for 0 < i < N :

ṡi = vi (1)

v̇i = f(si−1 − si, vi−1 − vi, vi) (2)
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and for i = 0:

ṡ0 = v0 (3)

v̇0 = f(sN − s0 + L, vN − v0, v0) (4)

where f is some nonlinear function. For the remainder of this post, we assume
that f is the function corresponding to the linear optimal velocity model:

f(h, ḣ, v) =


0 h < hmin

α
(
vmax

h−hmin

hmax−hmin
− v
)

+ βḣ hmin < h < hmax

vmax h > hmax

where vmax, hmin, hmax are fixed parameters of the system. For convenience we
define the following constant

k =
αvmax

hmax − hmin

Although the system above described is nonlinear, assuming that all the head-
ways are in the saturation region hmin < h < hmax for all time, it may be
transformed into an affine-linear system.

Let x ∈ R2N , s ∈ RN , v ∈ RN , where

s =


s0

s1

...
sN−1

 v =


v0

v1

...
vN−1

 x =


s0

v0

...
sN−1

vN−1


Then the system described by equations (1)-(4) may be rewritten as

ṡ(t) = A0x(t)

v̇(t) = Ass(t) + Avv(t)

where

A0 =



0 1 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0


As =


−k 0 0 · · · 0 k
k −k 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · k −k



Av =


−β − α 0 0 · · · 0 β

β −β − α 0 · · · 0 0
0 β −β − α · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · β −β − α
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The matrix A1 is found by interleaving the columns of As and Av. Next,
interleaving the rows of A0 and A1 gives us the A matrix in the affine linear
state space representation of the system

ẋ(t) = Ax(t) + BL(t) + xoffset

y(t) = Cx(t) + DL(t)

with xoffset = [0 · · · − k]> and B = [0 0 · · · 0 k]>. The output and
feed-forward matrices are defined by

C =

[
−1 0 · · · 1 0
0 1 · · · 0 0

]
D =

[
k
0

]
In general, an N -dimensional affine linear dynamical system may be transformed
into an (N + 1)-dimensional linear system

ż(t) = Ãz(t) + B̃L(t)

y(t) = C̃z(t) + D̃L(t)

where z(t) = [1 x(t)>]> and

Ã =

[
0 0

xoffset A

]
B̃ =

[
0
B

]
C̃ =

[
0 C

]
D̃ = D

Finally we discretize the linear system assuming a zero-order hold for the input,
defining Cd = C̃ and Dd = D̃ and

Ad = exp{ÃTsample} Bd =

(ˆ Tsample

0

exp{Ãτ}dτ

)
B̃

where the final state space representation of the discrete time linear dynamical
system is:

z[k + 1] = Adz[k] + BdL[k]

y[k] = Cdz[k] + DdL[k]

System Inversion

Assume that we are given a discrete time linear dynamical system:

x[k + 1] = Ax[k] + BL[k]

vN [k] = Cx[k] + DL[k]

Our goal is to model a system taking input y[k] and return L̃[k] such that

L̃[k] ≈ L[k]. This system will be referred to as the inverse system to the one
above.

3



H H−1
L[k] vN [k] L̃[k]

Figure 2: Cascasde with Inverse System

Assuming that the input to the system is unknown, cascading with the
inverse system will allow us to approximate the input, which we can then use
to infer the characteristic velocity. We employ the Massey-Sain Algorithm,
published in IEEE Transactions on Automatic Control, vol. 14, 1969. Observe
that

vN [k] = Cx[k] + DL[k]

vN [k + 1] = CAx[k] + CBL[k] + DL[k]

Continuing this iteration, we get

Yk,M = OMx[k] + MMLk,M

where

Yk,M =


y[k]

y[k + 1]
...

y[k +M ]

 OM =


C
CA

...
CAM



MM =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAM−1B CAM−2 CAM−3 · · · D

 Lk,M =


L[k]

L[k + 1]
...

L[k +M ]


The main result is summarized in the theorems below:

Theorem 0.1. The system H described above has inverse with lag M if and
only if

rank(MM ) = rank(MM−1) +m

where m is the delay of the forward system.

Theorem 0.2. If the system H has a delay with lag M there exists a matrix K
such that

KYk,M = [IM 0]

The state-space representation of the inverse system is given by

x[k + 1] = Ax[k] + BL[k]

= (A−BKOM )x[k] + BKYk,M

L[k] = −KOMx[k] +KYk,M
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Applications and Future Work

Follower Stopper T

T−1V (N/L̃)

L[k]

a[k]

L̃[k]

vN [k]U [k]

Figure 3: Closed Loop System

The following feedback system is proposed to mitigate traffic. Using the in-
verse system above, the unknown input L to the traffic system is approximated.
The characteristic velocity is inferred from this value, which is then fed in as an
input to the FollowerStopper. Here, T is the traffic system computed in Part I
and T−1 is the inverse computed in Part II.

We can generalized the system engineering above below

Follower Stopper T

HV (N/L̃)

L[k]

a[k]

L̃[k]

vN [k]

σ[k]
U [k]

Figure 4: Closed Loop System

where H is a system that approximates L using measurements σ. In the
case above, σ = vN and H is the inverse system. In the future we explore
approaches where σ represents other measurements extracted from the traffic
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system. In particular we may employ data driven approach, where H is found
using system identification. In the next post we consider these approaches as
well as comparing results.

6


