

Minimum Snap Trajectory Generation and Control for Quadrotors

Authors: Daniel Mellinger and Vijay Kumar

Preliminary Exam Paper Presentation
Zhaoliang Zheng

Electrical and Computer Engineering

The Laboratory for Embedded Machines and
Ubiquitous Robots (LEMUR)
UC Los Angeles
Advisor: Dr. Ankur Mehta

Motivation

- Most of the work in this area uses controllers that are derived from linearization of the model around hover conditions and are stable only under reasonably small roll and pitch angles.
- Some work in this area has addressed aerobatic maneuvers [3, 6, 9, 10]. However, there are no stability and convergence guarantees when the attitude of the rotor craft deviates substantially from level hover conditions.
- While machine learning techniques have been successful in learning models using data from human pilots [9] and in improving performance using reinforcement learning [3], these approaches do not appear to lend themselves to motion planning or trajectory generation in environments with obstacles.
- Similar problems have been addressed using model predictive control (MPC) [11, 12]. With these approaches, guarantees of convergence are only available when the linearized model is fully controllable [12] or if a control Lyapunov function can be synthesized [13].
- As such it appears to be difficult to directly apply such techniques to the trajectory generation of a quadrotor.

Introduction

In this paper, we address the controller design and the trajectory generation for a quadrotor maneuvering in three dimensions in a tightly constrained setting typical of indoor environments. In such settings, it is necessary to develop flight plans that leverage the dynamics of the system instead of simply viewing
 the dynamics as a constraint on the system. It is necessary to relax small angle assumptions and allow for significant excursions from the hover state. We develop an algorithm that enables the generation of optimal trajectories through a series of keyframes or waypoints in the set of positions and orientations, while ensuring safe passage through specified corridors and satisfying constraints on achievable velocities, accelerations and inputs.

Some Notations:

- Coordinate systems: world frame \mathcal{W}, body frame \mathcal{B}
- Euler angles: roll, pitch and yaw ($\phi, \theta, \psi)$
- Rotation matrix from \mathcal{B} to $\mathcal{W}: w_{R_{B}}=w_{R_{C}} C_{R_{B}}$
- Angular velocity of $\mathcal{B}: \omega_{\mathcal{B} W}$
- For each rotor: angular speed ω_{i} and force: F_{i}, moment M_{i}
- Control input: $u=\left[\begin{array}{llll}u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right]^{T}$
- COM in $\mathcal{W}: r=\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}$
- Inertia matrix referenced to COM along \mathcal{B} axes: \mathcal{J}
- Distance from the axis of rotation of the rotors to COM: L

Model

Key equations:

- $\omega_{\mathcal{B} W}=p \boldsymbol{x}_{B}+q y_{B}+r \boldsymbol{Z}_{B}$
- $F_{i}=k_{F} \omega_{i}^{2}, M_{i}=k_{M} \omega_{i}^{2}$
$u=\left[\begin{array}{cccc}k_{F} & k_{F} & k_{F} & k_{F} \\ 0 & k_{F} L & 0 & -k_{F} L \\ -k_{F} L & 0 & k_{F} L & 0 \\ k_{M} & -k_{M} & k_{M} & -k_{M}\end{array}\right]\left[\begin{array}{c}\omega_{1}^{2} \\ \omega_{2}^{2} \\ \omega_{3}^{2} \\ \omega_{4}^{2}\end{array}\right]$
- $\dot{\omega}_{\mathcal{B} W}=\mathcal{J}^{-1}\left[-\omega_{\mathcal{B} W} \times \mathcal{J} \omega_{\mathcal{B} W}+\left[\begin{array}{l}u_{2} \\ u_{3} \\ u_{4}\end{array}\right]\right]$
- System states:

$$
\mathbf{x}=\left[\begin{array}{llllllllllll}
x & y & z & \phi & \theta & \psi & \dot{x} & \dot{y} & \dot{\mathbf{z}} & p & q & r
\end{array}\right]^{T}
$$

Fig. 1. The flat outputs and the reference frames.

II. Model

III. Differential Flatness

Derivation

Derivation

First derivative of（3）：$m \ddot{r}=-\mathrm{mg}_{\mathrm{B}}+\mathrm{u}_{1} \mathbf{z}_{\mathrm{B}}$

$$
\Rightarrow \quad m \dot{a}=\dot{u}_{1} z_{B}+\omega_{\mathcal{B} w} \times u_{1} z_{B}
$$

$$
\text { Project this along } z_{B} \text {, and using the fact: } \dot{u}_{1}=z_{B} \cdot m \dot{a}
$$

$$
\text { substitute } \dot{u}_{1} \text { into }(7) h_{\omega}=\omega_{\mathcal{B} w} \times z_{B}=\frac{m}{u_{1}}\left(\dot{a}-\left(z_{B} \cdot \dot{a}\right) z_{B}\right)\llcorner ー ー ー ー ー ー ー ー ー ー ー ー ル
$$

$$
h_{\omega} \text { is the projection onto the } x_{B}-y_{B} \text { plane: }
$$

$$
\begin{aligned}
& \sigma(t)=\left[t_{0}, t_{m}\right] \rightarrow \mathbb{R}^{3} \times S O(2) \\
& \text { Position: } \sigma_{1: 3}=r=\left[\begin{array}{ll}
x, y, z
\end{array}\right]^{T} \\
& \text { Velocity: } \sigma_{1: 3}=\left[\begin{array}{lll}
\dot{x} & \dot{\boldsymbol{y}} & \dot{\mathbf{z}}
\end{array}\right]^{T} \\
& \text { Acceleration: } \sigma_{1: 3}^{*}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
p=-h_{\omega} \cdot y_{B}, r=\omega_{\mathcal{B} W} \cdot z_{B}=\left(\omega_{\mathcal{B} C}+\omega_{C W}\right) z_{B} \stackrel{\omega_{B C} \text { has no } z_{B}}{q=h_{\omega} \cdot x_{B}}, ~
\end{array}\right.
$$

$$
r=\omega_{C W} \cdot z_{B}=\dot{\psi} z_{W} \cdot z_{B}
$$

$\boldsymbol{\alpha}_{\mathcal{B} W}$ along $\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}$ ：Second derivative of（3）and follow the same process．
$\boldsymbol{\alpha}_{\mathcal{B} w}$ along z_{B} ：use the fact
$\boldsymbol{\alpha}_{\mathcal{B} W}=\boldsymbol{\alpha}_{B C}+\omega_{C W} \times \omega_{\mathcal{B C}}+\boldsymbol{\alpha}_{C W}$ Note：

$$
\begin{aligned}
& \begin{array}{c}
z_{B}=\frac{t}{\|t\|}, t=\left[\ddot{\sigma_{1}}, \ddot{\sigma_{2}}, \ddot{\sigma_{3}}+g\right]^{T} \\
\sigma_{4}=\psi \Rightarrow x_{C}=\left[\cos \sigma_{4}, \sin \sigma_{4}, 0\right]^{T}
\end{array} \\
& \left.\begin{array}{c}
\sigma_{4}=\psi \Longrightarrow x_{C}=\left[\cos \sigma_{4}, \sin \sigma_{4}, 0\right]^{T} \\
\left(z_{B} \times x_{C}\right.
\end{array}\right\} \begin{array}{c}
x_{C} \times z_{B} \neq 0 \\
======\Rightarrow
\end{array}{ }^{w} R_{B}=\left[\begin{array}{lll}
x_{B} & y_{B} & z_{B}
\end{array}\right]^{T} \\
& z_{B}, x_{C} \Rightarrow\left\{\begin{array}{c}
y_{B}=\frac{z_{B} \times x_{C}}{\left\|z_{B} \times x_{C}\right\|} \\
x_{B}=y_{B} \times z_{B}
\end{array}\right.
\end{aligned}
$$

（7） $\mathbf{I}_{\mathbf{X}}=\left[\begin{array}{llll}x y z & \varphi \theta \psi & \dot{x} \dot{\boldsymbol{y}} \dot{\boldsymbol{z}} & p q r\end{array}\right]^{T} \mathbf{I}$ I $u=\left[\begin{array}{llll}u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right]^{T}$
\square

Trajectory，Position， velocity and acceleration of COM

\square

$$
{ }^{W} R_{B}
$$

Angular velocity：$p q r$

$$
\sigma=[x, y, z, \psi]^{T}
$$

Angular acceleration：
Control $\alpha_{B W}$
uts：u

$\square 4$

－
－$\alpha_{B C} \cdot z_{B}=0$
－$z_{B} \cdot \omega_{C W} \times \omega_{\mathcal{B C}}=0$

$$
\begin{aligned}
& \Rightarrow \boldsymbol{\alpha}_{B W W} \cdot z_{B}=\boldsymbol{\alpha}_{C W} \cdot z_{B} \\
& =\ddot{\psi} z_{W} \cdot z_{B}
\end{aligned}
$$

IV. Control

The errors between specified trajectories, attitude and current trajectories, attitude:

Control inputs:

$$
u=\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{T}
$$

IV. Control

The errors between specified trajectories, attitude and current trajectories, attitude

Trajectory Generation

Nondimensionalization: consider a general form of the optimization problem for a nondimensional variable and nondimensional time. The process includes temporal scaling and spatial scaling.

Concider trajectories in the flat output space of the form of (5).

Spatially Scaled Trajectories

This experiment demonstrates how the spatially scaled trajectory is used to fly through a thrown circular hoop.

Temporal Scaling, Corridor Constraints, and Optimal Segment Times

This experiment demonstrates the ability to fly through environments with several narrow gaps.

The worst case performance is for the position the farthest away ($x=1: 6$ meters and $y=0: 4$ meters) for which data is shown in Fig. 4.

Fig. 4. Performance data for a trajectory for flying through a thrown hoop.

A series of images showing the full experiment are shown in Fig. 5.

Fig. 5. Composite image of a single quadrotor flying through a thrown circular hoop. See attached video or http://tinyurl.com/pennquad.

Fig. 6. Trajectory generated to fly through three gaps (left) and performance data for two traversal speeds (right)

Fig. 7. Composite image of a single quadrotor quickly flying through three static circular hoops. See attached video or http://tinyurl.com/pennquad.

B. Temporal Scaling, Corridor Constraints, and Optimal Segment Times

References

[3] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, "A simplelearning strategy for high-speed quadrocopter multi- flips," in Proc. Of the IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, May 2010, pp. 1642-1648.

Thanks for your listening

Back-up slides

$$
\begin{array}{r}
\sigma_{T}(t)=\left\{\begin{array}{c}
\sum_{i=0}^{n} \sigma_{T i 1} t^{i} \quad t_{0} \leq t \leq t_{1} \\
\sum_{i=0}^{n} \sigma_{T i 1} t^{i} \quad t_{1} \leq t \leq t_{2} \\
\vdots \\
\sum_{i=0}^{n} \sigma_{T i m} t^{i} \quad t_{m-1} \leq t \leq t_{m}
\end{array}\right. \\
\min \int_{t_{0}}^{t_{m}} \mu_{r}\left\|\frac{d^{k_{r} r_{T}}}{d t^{k_{r}}}\right\|^{2}+\mu_{\psi} \frac{d^{k_{r} r_{T}}}{d t^{k_{r}}}
\end{array}
$$

