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Motivation

Most of the work in this area uses controllers that are derived from linearization
of the model around hover conditions and are stable only under reasonably small
roll and pitch angles.

Some work in this area has addressed aerobatic maneuvers [3, 6, 9, 10]. However,
there are no stability and convergence guarantees when the attitude of the rotor
craft deviates substantially from level hover conditions.

While machine learning techniques have been successful in learning models
using data from human pilots [9] and in improving performance using
reinforcement learning [3], these approaches do not appear to lend themselves to
motion planning or trajectory generation in environments with obstacles.

Similar problems have been addressed using model predictive control (MPC) [11,
12]. With these approaches, guarantees of convergence are only available when
the linearized model is fully controllable [12] or if a control Lyapunov function can
be synthesized [13].

As such it appears to be difficult to directly apply such techniques to the
trajectory generation of a quadrotor.



Introduction

In this paper, we address the controller design and the A(
trajectory generation for a quadrotor maneuvering W»
in three dimensions in a tightly constrained setting
typical of indoor environments. In such settings, it is
necessary to develop flight plans that leverage the
dynamics of the system instead of simply viewing
the dynamics as a constraint on the system. It is necessary to relax small angle
assumptions and allow for significant excursions from the hover state. We develop
an algorithm that enables the generation of optimal trajectories through a series of
keyframes or waypoints in the set of positions and orientations, while ensuring safe
passage through specified corridors and satisfying constraints on achievable
velocities, accelerations and inputs.




Fig. 1. The flat outputs and the reference frames.




Key equations:
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System states:
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[1]. Differential Flatness

I The states and inputs are differentially flat: they can |
| be written as algebraic functions of selected flatl

I outputs and their derivatives: I
l
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Derivation
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V. Control

The errors between specified
trajectories, attitude and current
trajectories, attitude:

Eoch

A controllerto follow specified trajectories:

or(t) = [rr(OT, Y7 (O]T

Control inputs:

u= [U1,u2;u3,u4] 4

Position 5. Motor |Ti: Mi| Rigid Body
Control e w— Dynamics Dynamics

[15] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro uav testbed,” IEEE Robotics and Automation Magazine, Sept. 2010.



The errors between

specified trajectories,
attitude and current
trajectories, attitude
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V. Control

Fdes
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Control inputs:
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Trajectory Generation

Optimal segment times

Adding corridor constaints

Nondimensionalization: consider a
general form of the optimization
problem for a nondimensional variable

and nondimensional time. The process Formulate the problem as

includes temporal scaling and spatial a quadratic program

scaling.

Concider trajectories in the flat

output space of the form of (5).



Spatially Scaled Trajectories

This experiment demonstrates how the spatially scaled
trajectory is used to fly through a thrown circular hoop.

VL.
Experiments

Temporal Scaling, Corridor Constraints,
and Optimal Segment Times

This experiment demonstrates the ability to fly through
environments with several narrow gaps.



The worst case performance is for the position the farthest away

_ _ \way A series of images showing the full experiment are shown
(x = 1:6 meters and y = 0:4 meters) for which data is shown in Fig. in Fig. 5.
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Fig. 4. Performance data for a trajectory for flying through a thrown hoop.

Fig. 5. Composite image of a single quadrotor flying through a thrown
circular hoop. See attached video or http:/tinyurl.com/pennquad.

A. Spatially Scaled
Trajectories
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Fig. 6. Trajectory generated to fly through three gaps (left) and performance
data for two traversal speeds (right).

Fig. 7. Composite image of a single quadrotor quickly flying through three
static circular hoops. See attached video or http://tinyurl.com/pennquad.

B. Temporal Scaling,
Corridor Constraints, and

Optimal Segment Times
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