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Motivation
• Most of the work in this area uses controllers that are derived from linearization

of the model around hover conditions and are stable only under reasonably small
roll and pitch angles.

• Some work in this area has addressed aerobatic maneuvers [3, 6, 9, 10]. However,
there are no stability and convergence guarantees when the attitude of the rotor
craft deviates substantially from level hover conditions.

• While machine learning techniques have been successful in learning models
using data from human pilots [9] and in improving performance using
reinforcement learning [3], these approaches do not appear to lend themselves to
motion planning or trajectory generation in environments with obstacles.

• Similar problems have been addressed using model predictive control (MPC) [11,
12]. With these approaches, guarantees of convergence are only available when
the linearized model is fully controllable [12] or if a control Lyapunov function can
be synthesized [13].

• As such it appears to be difficult to directly apply such techniques to the
trajectory generation of a quadrotor.



Introduction

In this paper, we address the controller design and the

trajectory generation for a quadrotor maneuvering

in three dimensions in a tightly constrained setting

typical of indoor environments. In such settings, it is

necessary to develop flight plans that leverage the

dynamics of the system instead of simply viewing

the dynamics as a constraint on the system. It is necessary to relax small angle

assumptions and allow for significant excursions from the hover state. We develop

an algorithm that enables the generation of optimal trajectories through a series of

keyframes or waypoints in the set of positions and orientations, while ensuring safe

passage through specified corridors and satisfying constraints on achievable

velocities, accelerations and inputs.



• Coordinate systems: world frame 𝒲 , body frame ℬ

• Euler angles: roll, pitch and yaw (𝜙, 𝜃, 𝜓)

• Rotation matrix from ℬ to 𝒲: 𝑤𝑅𝐵 = 𝑤𝑅𝐶 𝐶𝑅𝐵
• Angular velocity of ℬ : 𝜔ℬ𝒲

• For each rotor: angular speed 𝜔𝑖 and force: 𝐹𝑖 ,

moment 𝑀𝑖

• Control input: 𝒖 = 𝑢1 𝑢2 𝑢3 𝑢4 𝑇

• COM in 𝒲: 𝒓 = 𝑥 𝑦 𝑧 𝑇

• Inertia matrix referenced to COM along ℬ axes: ℐ

• Distance from the axis of rotation of the rotors to

COM: L
Model

Some Notations:



• 𝜔ℬ𝒲 = 𝑝𝒙𝐵 + 𝑞𝒚𝐵 + 𝑟𝒛𝐵 (1)

• 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2 , 𝑀𝑖 = 𝑘𝑀𝜔𝑖
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• 𝒖 =

𝑘𝐹 𝑘𝐹
0 𝑘𝐹𝐿

𝑘𝐹 𝑘𝐹
0 −𝑘𝐹𝐿

−𝑘𝐹𝐿 0
𝑘𝑀 −𝑘𝑀

𝑘𝐹𝐿 0
𝑘𝑀 −𝑘𝑀

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2

(2)

• 𝑚 ሷ𝒓 = −mg𝐳B + u1𝐳B (3)

• ሶ𝜔ℬ𝒲 = ℐ−1 −𝜔ℬ𝒲 × ℐ𝜔ℬ𝒲 +

𝑢2
𝑢3
𝑢4

(4)

• System states:

𝐱 = 𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 ሶ𝒙 ሶ𝒚 ሶ𝒛 𝑝 𝑞 𝑟 𝑇 II. Model

Key equations:
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Derivation!

III. Differential Flatness

The states and inputs are differentially flat: they can
be written as algebraic functions of selected flat
outputs and their derivatives:

𝐱,𝐮 = 𝐟 𝛔 = 𝐟( 𝒙, 𝒚, 𝒛, 𝝍 𝑻)

Use trajectory as input and constrains to control over
all the states and control inputs:

𝜎 𝑡 = 𝑡0, 𝑡𝑚 → ℝ3 × 𝑆𝑂(2)

Save the best to the next!



𝑞

𝑧𝐵
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𝑟
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𝒙

𝛼ℬ𝒲

𝑊𝑅𝐵
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Derivation



01
Trajectory, Position, 
velocity and 
acceleration of COM

𝜎 𝑡 = 𝑡0, 𝑡𝑚 → ℝ3× 𝑆𝑂(2)
Position:𝜎1:3 = 𝒓 = 𝑥,𝑦, 𝑧 𝑇

Velocity: ሶ𝜎1:3 = [ ሶ𝒙 ሶ𝒚 ሶ𝒛]𝑇

Acceleration: ሷ𝜎1:3

02
𝑊𝑅𝐵

𝑧𝐵 =
𝑡

||𝑡||
, 𝑡 = ሷ𝜎1 , ሷ𝜎2 , ሷ𝜎3 +𝑔 𝑇

𝜎4 = 𝜓 ⟹ 𝑥𝐶 = cos𝜎4 , sin𝜎4 , 0
𝑇

𝑧𝐵 ,𝑥𝐶 ⟹ቐ
𝑦𝐵 =

𝑧𝐵 ×𝑥𝐶
||𝑧𝐵 ×𝑥𝐶||

𝑥𝐵 = 𝑦𝐵 × 𝑧𝐵

03 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑝 𝑞 𝑟

First derivative of (3): 𝑚 ሷ𝒓 = −mg𝐳B + u1𝐳B

⇒ 𝑚 ሶ𝑎 = ሶ𝑢1𝑧𝐵+𝜔ℬ𝒲 ×𝑢1𝑧𝐵 (7)

Project this along 𝑧𝐵, and using the fact: ሶ𝑢1 = 𝑧𝐵 ∙ 𝑚 ሶ𝑎

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 ሶ𝑢1 𝑖𝑛𝑡𝑜 (7)
============⇒

ℎ𝜔 =𝜔ℬ𝒲 × 𝑧𝐵 =
𝑚

𝑢1
( ሶ𝑎 − 𝑧𝐵 ∙ ሶ𝑎 𝑧𝐵)

ℎ𝜔 is the projection onto the 𝑥𝐵 − 𝑦𝐵 𝑝𝑙𝑎𝑛𝑒:

ቊ
𝑝 = −ℎ𝜔 ∙ 𝑦𝐵
𝑞 = ℎ𝜔 ∙ 𝑥𝐵

, 𝑟 = 𝜔ℬ𝒲 ∙ 𝑧𝐵 = (𝜔ℬ𝐶+ 𝜔𝐶𝒲)𝑧𝐵
𝜔ℬ𝐶 ℎ𝑎𝑠 𝑛𝑜 𝑧𝐵

𝑟 = 𝜔𝐶𝒲 ∙ 𝑧𝐵 = ሶ𝜓𝑧𝑊 ∙ 𝑧𝐵

04

𝜶ℬ𝒲 along xB , yB: Second 

derivative of (3) and follow 

the same process. 

𝜶ℬ𝒲 along zB: use the fact

𝜶ℬ𝒲 = 𝜶ℬ𝐶 +𝜔𝐶𝒲 ×𝜔ℬ𝐶 +𝜶𝐶𝒲

Note: 

- 𝜶ℬ𝐶 ∙ 𝑧𝐵 = 0

- 𝑧𝐵 ∙ 𝜔𝐶𝒲 × 𝜔ℬ𝐶 = 0

⇒ 𝜶ℬ𝒲 ∙ 𝑧𝐵 = 𝜶𝐶𝒲 ∙ 𝑧𝐵

= ሷ𝜓𝑧𝑊 ∙ 𝑧𝐵

𝑢1 = 𝑚||𝑡||

𝐺𝑖𝑣𝑒𝑛 𝜶ℬ𝒲 , 𝜔ℬ𝒲 𝑎𝑛𝑑 (4)
𝑢2
𝑢3
𝑢4

𝐱 = 𝑥 𝑦 𝑧 𝜑 𝜃 𝜓 ሶ𝒙 ሶ𝒚 ሶ𝒛 𝑝 𝑞 𝑟 𝑇

𝑢 = 𝑢1 𝑢2 𝑢3 𝑢4 𝑇

𝜎 = 𝑥, 𝑦, 𝑧, 𝜓 𝑇
𝑥𝐶 ×𝑧𝐵 ≠ 0
======⇒

𝑤𝑅𝐵 = 𝑥𝐵 𝑦𝐵 𝑧𝐵 𝑇

Angular acceleration: 
𝜶ℬ𝒲

Control inputs: 𝑢

Derivation



A controller to follow specified trajectories:

𝝈𝑻 𝒕 = 𝒓𝑻 𝒕 𝑻,𝝍𝑻 𝒕 𝑻

The errors between specified 

trajectories, attitude and current 

trajectories, attitude: 

𝑒𝑝 , 𝑒𝑣, 𝑒𝑅 , 𝑒𝜔

Control inputs:

𝒖 = 𝑢1,𝑢2,𝑢3,𝑢4
𝑇

IV. Control 

[15] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro uav testbed,” IEEE Robotics and Automation Magazine, Sept. 2010.



ቋ
𝒆𝒑 = 𝒓 − 𝒓𝑇 , 𝑒𝑣 = ሶ𝒓 − ሶ𝒓𝑻

𝑭𝒅𝒆𝒔 = −𝑲𝒑𝒆𝒑 −𝑲𝒗𝒆𝒗 +𝑚𝑔𝒛𝑾 +𝑚 ሷ𝒓𝑻
𝑢1 = 𝑭𝒅𝒆𝒔 ∙ 𝑧𝐵

𝒛𝑩,𝒅𝒆𝒔 =
𝑭𝒅𝒆𝒔

||𝑭𝒅𝒆𝒔||

𝑤𝑅𝐵
𝑑𝑒𝑛𝑜𝑡𝑒 𝑎𝑠 𝑅𝑑𝑒𝑠

𝑅𝑑𝑒𝑠𝑒3 = 𝑧𝐵,𝑑𝑒𝑠

𝒆𝑹 =
𝟏

𝟐
𝑹𝒅𝒆𝒔
𝑻 𝑤𝑅𝐵−

𝑤𝑅𝐵
𝑇𝑅𝑑𝑒𝑠

𝒆𝝎 = 𝐵 𝜔ℬ𝒲 −
𝐵
𝜔ℬ𝒲,𝑇

𝒖𝟐, 𝒖𝟑, 𝒖𝟒
𝑻 = −𝑲𝑹𝒆𝑹 −𝑲𝝎𝒆𝝎

The errors between 

specified trajectories, 

attitude and current 

trajectories, attitude

Control inputs:

𝑢 = 𝑢1,𝑢2, 𝑢3,𝑢4
𝑇

IV. Control 



Trajectory Generation

1

3

2

4

5

Concider trajectories in the flat 

output space of the form of (5).

Nondimensionalization: consider a 

general form of the optimization 

problem for a nondimensional variable 

and nondimensional time. The process 

includes temporal scaling and spatial 

scaling. 

Formulate the problem as 

a quadratic program

Adding corridor constaints

Optimal segment times



VI.

Experiments

Spatially Scaled Trajectories

Temporal Scaling, Corridor Constraints, 

and Optimal Segment Times

This experiment demonstrates how the spatially scaled

trajectory is used to fly through a thrown circular hoop.

This experiment demonstrates the ability to fly through

environments with several narrow gaps.



A. Spatially Scaled 

Trajectories

The worst case performance is for the position the farthest away 
(x = 1:6 meters and y = 0:4 meters) for which data is shown in Fig. 
4.

A series of images showing the full experiment are shown 
in Fig. 5.



B. Temporal Scaling, 

Corridor Constraints, and 

Optimal Segment Times
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𝜎𝑇 𝑡 =

෍
𝑖=0

𝑛

𝜎𝑇𝑖1𝑡
𝑖 𝑡0 ≤ 𝑡 ≤ 𝑡1

෍
𝑖=0

𝑛

𝜎𝑇𝑖1𝑡
𝑖 𝑡1 ≤ 𝑡 ≤ 𝑡2

⋮

෍
𝑖=0

𝑛

𝜎𝑇𝑖𝑚𝑡
𝑖 𝑡𝑚−1 ≤ 𝑡 ≤ 𝑡𝑚

minන
𝑡0

𝑡𝑚

𝜇𝑟
𝑑𝑘𝑟𝑟𝑇
𝑑𝑡𝑘𝑟

2

+ 𝜇𝜓
𝑑𝑘𝑟𝑟𝑇
𝑑𝑡𝑘𝑟


