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Notations are very annoying.

1 EM Algorithm

The expectation maximization (EM) algorithm is proposed in [1].
We use k to index iterations of the EM algorithm.
X represents complete data, but Y represents incomplete data.

E step: Q
(
η, η̂(k)

)
= E

[
log fX(X; η)|Y = y; η̂(k)

]
, (1)

M step: η̂(k+1) = arg max
η

Q
(
η, η̂(k)

)
. (2)

2 Recursive EM

The recursive EM is developed in [2], and the recursive EM with discount
factor is introduced in [3].

In an online algorithm, the time index and the iteration index should
match, or at least around the same rate.

The recursive EM can be written as

E step: Lk+1(η) = Qk+1

(
η, η̂(k)

)
= γLk(η) + E

[
log fX(x; η)|yk+1; η̂

(k)
]
.

(3)

M step: η̂(k+1) = arg max
η

Lk+1(η) = arg max
η

Qk+1

(
η, η̂(k)

)
. (4)

In the equation, γ is the discount factor.
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With the Newton second-order approximation, we can combine both
steps into the following updates:

η̂(k+1) = η̂(k) + I−1c,k+1S(yk, η̂
(k)), (5)

Ic,k+1 = γIc,k + Īc(η̂
(k)), (6)

where

S(yk, η) = ∇η log fY (yk; η), (7)

Īc(η) = −E
[
∇2
η log fX(xk; η)

]
. (8)

The proof is omitted.
Since the above derivation relies on the work in [4], where x1:k and

y1:k are assumed independent. We can first consider a stationary robots
observing several times (map construction), and add the mobility later.

3 Application on SLAM Problem

The EM method for the SLAM problem is formulated in [5], but the SLAM
algorithm is basically offline.

In the SLAM scenario, the complete data X is the spatial state St and
the corresponding observation Ot.

Under the setting of EKF, we assume that all the distributions are Gaus-
sian.

The probability density function of complete data at the instance t is
given by

fSt,Ot(st, ot; η) = fSt|Ot
(ot|st; η)fSt(st). (9)

The distribution of fSt(st) is derived from fSt−1(st−1), as in the the KF.
The Q function is given by

Q
(
η, η̂(k)

)
= E

[
log fSt,Ot(St, ot; η)|Ot = ot, η̂

(k)
]

= c− 1

2
||ot − h(St; η)||2R−1

is easily obtained by smoothing.
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